We touch your electricity everyday!

CSEZEN-F 100x-V2

Advance Feeder Protection & Monitoring IED

DRAW-OUT WITH SELF CT SHORTING FAULT EVENT DISTURBANCE RECORDER DI/DO PROGRAMMABLE MATRIX

METERING PROTECTION

CATALOG

PMD Division

CONTENT

S.No.	Description
1.	Introduction
2.	Application
3.	Hardware
4.	Protection Features
5.	Supervision Functions
6.	Functional Diagram
7.	Protection Functions
8.	Data Acquisition Functions
9.	Fault Record
10.	Event Record
11.	Oscilloscope Record
12.	Communication (Local & Remote)
13.	Human Machine Interface
14.	Setting Ranges
15.	Technical Data
16.	Standards
17.	Recommended Terminal Lugs Specifications
18.	Draw out process of the Relay
19.	Connection Diagram
20.	CT Conn Diagram (3 OC + 1REF)
21.	CT Conn Diagram (Zero current differential for star winding
22.	CT Conn Diagram (Highly stabilized differential
	protection for Motor, Generator & Alternators)
23.	CT Conn Diagram (3 OC + 1EF)
24.	Trip Circuit Supervision Diagram
25.	Dimension Details
26.	Panel mounting Details
25.	Ordering Information

1.0 Introduction

CSEZEN series offers a multi functional comprehensive smart protection solution for Feeder, Generator, Motor & Transformer segment.

CSEZEN family of protective relays are advance numerical relays that provide multi protection and monitoring with reliable and fast protection solution in a single unit.

In this family of CSEZEN series, the CSEZEN-F is an advanced Feeder protection relay designed for controlling, protecting and monitoring industrial installations, public distribution networks and substations.

CSEZEN-F also provides an automation solution of power control. It complies with IEC 60870-5-103, IEC 61850, Modbus protocol for high integration of protection & control. CSEZEN-F offers following features in a compact & smart flush mounting enclosure.

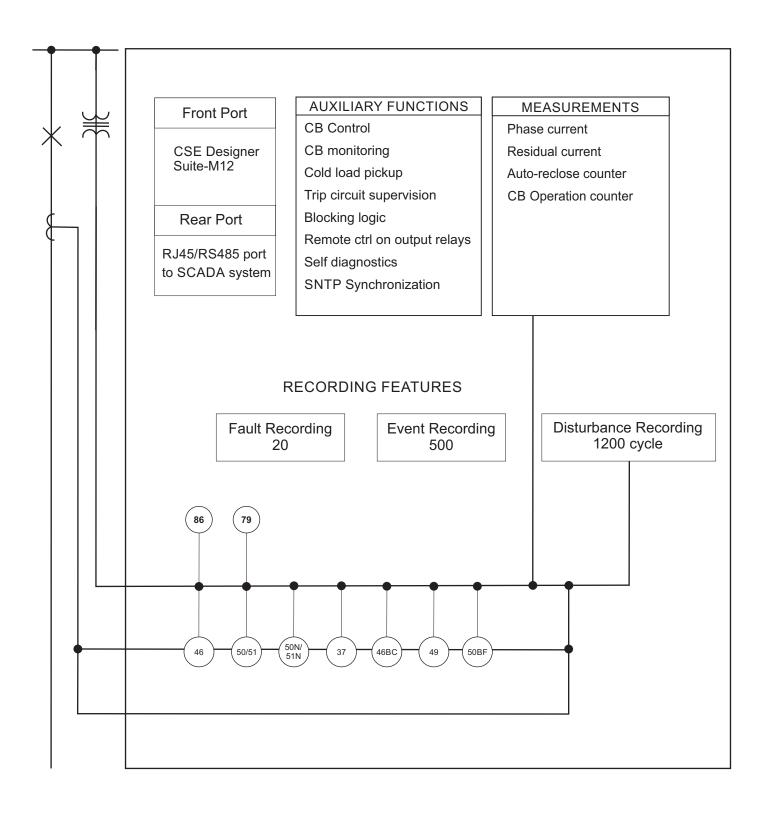
- Programmable Rated Current 1A & 5A
- Measurement, Protection & Metering
- Draw-out enclosure have modular design with CT shorting
- Communication (Local & Remote)
- DI/DO/LED Matrix Programmability
- Intelligent key for DI & DO status, details of fault pickup & status of last fault occurred
- Last 20 fault record (non-volatile memory) with time stamp
- Last 500 event record (non-volatile memory) with time stamp
- Disturbance Recording
- CSEZEN-F relays are equipped with self supervision function

2.0 Application

CSEZEN-F relay will cover wide range of protection functions required for feeder segment. It can be used as part of protection scheme for transformers and generator transformers. CSEZEN-F relays can also provide back-up protection for HV and EHV transmission systems.

3.0 Hardware

- Digital Signal Processor based numeric design
- Measures true RMS with DFT filter
- 1A & 5A site selectable
- CT Terminal with self shorting
- 4 Current Analog Input
- 8 Digital Inputs
- 8 Digital Outputs
- 16 LEDs at Pickup & Trip on fault
- LAN-RJ45/RS-485/USB ports for Communication
- 16x2 Alpha numeric LCD
- 5 Push button on the front for HMI

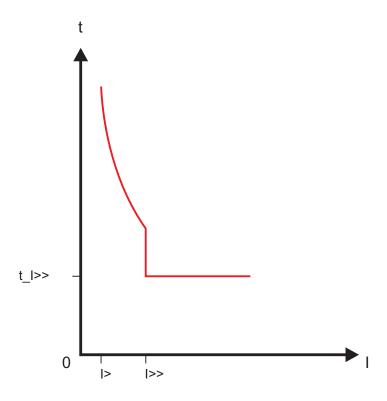

4.0 Protection Features

- Three Phase Time Over Current Protection
- Three Phase Instantaneous Over Current Protection
- Three Phase Under Current
- Ground Time Over Current
- Ground Instantaneous Over Current
- Derived Earth Over Current
- Negative Phase Seq. Over Current
- Broken Conductor Detection
- Auto Re-closer
- Cold Load Pickup
- Thermal Overload
- Restricted Earth
- Harmonic Blocking

5.0 Supervision Functions

- Output Relay Latching
- Open-Close Breaker Command
- Trip Circuit Supervision
- Circuit Breaker Failure Protection

6.0 Functional Diagram



7.0 Protection Functions

Three Phase Over-current

Three Phase over current element (50P/51P) operates in a time period that depends on the applied current and on the set curve. The protection element trip when phase current exceeds the set current threshold for the set time.

The independent two stages are available for phase fault protection. For I> & I>> the user may independently select definite time delay or inverse time delay with different type of curves.

Over current Element

8

Inverse Characteristics Formula

Refer following formula for EINV, VINV, LINV, NINV1.3, NINV3.0, NINV0.6 characteristics:

Very Inverse
$$t = \frac{13.5}{(I/I_o) - 1}$$
 ti [s]

Extremely Inverse
$$t = \frac{80}{(1/1)^2 - 1}$$
 ti [s]

Long time Inverse
$$t = \frac{120}{(I/I_s) - 1}$$
 ti [s]

Normal Inverse 3.0/1.3/0.6
$$t = \frac{0.14/0.061/0.028}{(I/I_s)^{0.02} - 1}$$
 ti [s]

Where
$$t$$
 =Tripping time ti =Time multiplier ti =Setting value of current

Earth Over current

Relay provides two stage of definite/inverse time earth fault protection. It can apply to over head transmission line, underground cable and feeder.

The earth current is measured from the CT earth input terminals only If REF is in Disable condition. In this case $le > 5\% - 250\% \times ln$

The independent two stages (le> & le>>) are available for earth fault protection. For first stage (le>) the user can select definite time delay or inverse time delay with different type of curves. The second Hi-Set stage (le>>) can be configured with definite time only.

Derived Earth Over current

There is a provision of derived / calculated Earth fault protection in the relay; where relay measures the zero sequence current from calculation of three phase vector summation.

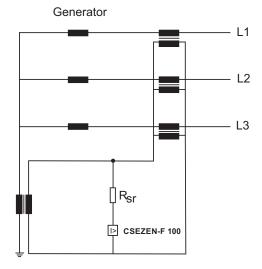
$$le_d (3 lo) = (lL1 + lL2 + lL3)$$

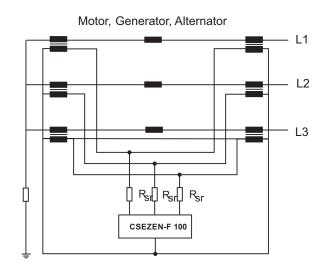
Derived calculated Earth fault protection starts from 10%.

The derived earth over current has two independent thresholds: le_d> and le_d>>.

REF / Earth Fault Protection availability

REF Protection	DIRECT (Analog) measurement of Earth Current	DIRECT (Analog) measurement of REF Current	Calculated Derived Earth Fault (3 lo) from 3 Phase current
ENABLED	NOT AVAILABLE	AVAILABLE	AVAILABLE
DISABLED	AVAILABLE	NOT AVAILABLE	AVAILABLE


Restricted Earth Protection


The restricted earth fault relay is high impedance differential scheme which balances zero sequence current flowing in the transformer neutral against zero sequence current flowing in the transformer phase windings. Any unbalance for in-zone fault will result in ana increasing voltage on the CT and thus will activate the Ref protection.

If REF is enabled then Restricted Earth Fault current is measured directly from CT terminals and Earth fault is derived from three phase currents (3lo).

This scheme is very sensitive and can than protect against low levels of fault current in resistance grounded systems where the earthing impedance and the fault voltage limit the fault current.

CSEZEN-F 100 serves as a supplement for the generator differential protection. It allows for example implementation of a zero current differential protection by integrating the star-point current. With the view to its higher resistance to disturbance from outside the protection area. It can be set much more sensitivity than the simple generator differential protection in order to prevent false tripping.

Under this wiring / application over current functions can be used as REF.

Zero current differential protection of the star point winding (restricted earth fault 64REF) of a generator

Highly stabilized differential current relay for alternator, generators and motors

Negative Phase Sequence Over current

This function protects against current unbalances resulting from anomalies in the power System or unbalanced loads. Negative phase sequence over current element give greater sensitivity to resistive phase to phase faults, where phase overcurrent element may not operate.

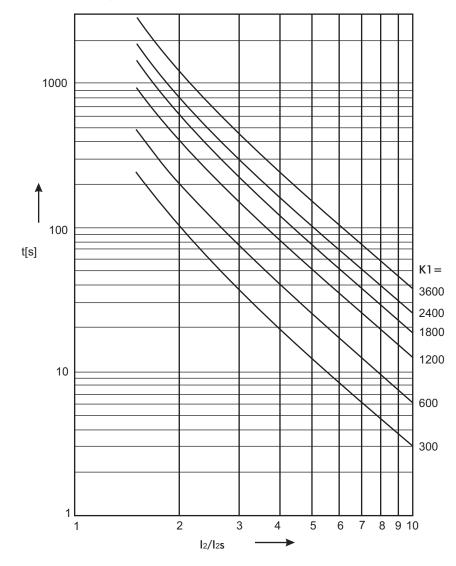
If I2 is Negative phase sequence current then

$$3 \cdot \left| \overrightarrow{I_2} \right| = \left| \overrightarrow{Ia} + \overrightarrow{a^2} \cdot \overrightarrow{Ib} + \overrightarrow{a} \cdot \overrightarrow{Ic} \right|$$
 Where $a = 1 \boxed{120^0}$

The Trip can be time delayed by a curve selectable by settings.

Refer following formula for the inverse characteristics of Negative Phase Sequence protection: -

Negative Phase Sequence Equation


$$t = \frac{K_1}{(I_2/I_{2s})^2 - 1}$$

K1: TMS for Inverse characteristics of NPS

t : Expected Trip Time

 ${\bf I_2}$: Measured negative sequence value

I_{2s}: Permissible NPS value

Negative Phase Sequence Inverse Time Characteristics

Three Phase Under current

The undercurrent protection makes it possible to detect a loss of load (for example the draining of a pump or breakage of a conveyor belt). If the phase current goes below the programmed undercurrent threshold for a programmed definite time the trip signal is given.

Thermal Over load Protection

Thermal overload protection can be applied to prevent damages to the electrical plant equipment when operating at temperatures in excess of the designed maximum withstand. A prolonged over loading causes excessive heating, which may result in premature deterioration of the insulation or in extreme cases, insulation failure.

CSEZEN relays incorporate a current based thermal replica, using load current to reproduce the heating and cooling of the equipment to be protected. The element thermal overload protection can be set with both alarm and trip stages.

The heating within any plant equipment, such as cables or transformers, is of resistive type (I^2Rxt), thus the quantity of heat generated is directly proportional to current squared (I^2). The thermal time characteristics used in the relay is based on current squared, integrated over time.

The CSEZEN relays automatically use the highest phase current as input information for the thermal model. Thermal protection can be inhibited on start-up. The thermal time characteristic is given by following formula:-

The formula for calculating the trip characteristics is as follows:

Trip time (taus)=
$$\tau$$
.In
$$\boxed{ \begin{array}{c} \left(\begin{array}{c} \frac{l^2}{|b^2|} - p^2 \end{array} \right) - p^2} \\ \left(\begin{array}{c} \frac{l^2}{|b^2|} - k^2 \end{array} \right) - k^2 \end{array} }$$
 for $p^2 < \frac{l^2}{(|b^2|)} \cap p^2 \le k^2$

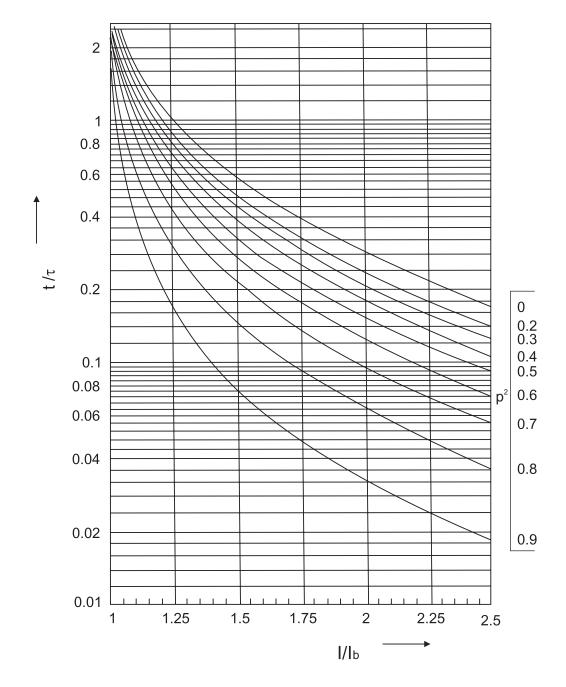
with τ = thermal time constant of the object to be protected.

I_b= Basic current

I_P= Initial load current

P= Initial load factor (p= 0 means cold operating component)

k= constant


In CSEZEN relay three modes are available for saving of thermal memory during power reset. These modes are programmable.

M1: On Power Reset thermal memory becomes 0.

M2: On Power Reset thermal memory starts from the same value as at the time of Power Off.

M3: On Power Reset thermal memory subtracts for the time it is in Off state & starts from the remaining value.

Presentation of the Trip with variable initial load factor:

Broken Conductor Protection

Majority of faults on a power system are shunt faults and induce appreciable current increase so easily

detectable by standard over current protection element.

Another type of unbalanced system condition is the series or open circuit fault. This fault can arise from

broken conductors, mal operation of single phase switchgear or the operation of fuses.

Series faults will not induce an increase in phase current on the system and hence are not easily

detectable. However on a lightly loaded line, the negative sequence current resulting from a series fault

condition may be very close to or less than the full load steady state unbalance arising from CT errors,

load unbalance etc. a negative sequence protection element therefore would not operate at low load

levels.

CSEZEN relays incorporate a protection element, which measures the ratio of negative to positive phase

sequence current (I2/I1). This protection element will be affected to a lesser extent than the measurement

of negative sequence current alone, since the ratio is approximately constant with variations in load

current. Hence a more sensitive setting may be achieved.

Auto Re-closer Strategy

As 80% of faults in overhead lines are transient, the use of the auto recloser is very advantageous.

Automatic auto-recloser allows a substation to operate unattended. The number of visits on site to

manually reclose a circuit breaker after a fault, can then be substantially reduced. This feature gives an

important advantage for substations supervised remotely.

Typically this auto reclose (AR) sequence of Instantaneous Trip(s) and Reclose Delays (Dead times)

followed by Delayed Trip(s) provide the automatic optimum method of clearing all types of faults i.e. both

Transient and Permanent, as quickly as possible and helps in improving the up time of the network in

service.

DI Inputs

To block the auto re-closer through remote DI AR Blocking -

CB Close DI -To get the circuit breaker status

CB Ready To get the CB ready or to give the closing command

Configurable Outputs: 79 AR Close, 79 Lockout

AR - Blocked

Unit changes immediately to "AR-blocked" status when an external AR Blocking DI is applied or internal EXIT is chosen for AR cycle in HMI. No Auto reclosing is possible in "AR-blocked" status.

Activating of AR

Prior to every AR it is possible to select which kind of tripping (I> or I>>, Ie>, I>>> etc.) will lead to automatic reclosing. This can be separately fixed for each protection.

Dead time (td)

Starts with the off signal of the circuit breaker. No closing command to the circuit breaker is given till expiry of the set dead time.

User programmable dead times are available for each protection trip operation.

The dead time is initiated when the trip output contact resets, the pickup is reset and the CB is open.

The CB close output is energized after the dead time has elapsed If CB ready input is present.

The dead time (dead time td1, dead time td2 dead time td3 dead time td4) starts when the feedback on 'CB CLOSE DI' is not available.

Reclaim time (tr)

This is the time during which after switching on or after AR a subsequent reclosing is prevented.

If the number of the set shots is reached, the relay is locked for this time after the last reclosing attempt.

If CB Ready DI is not available relay will not generate closing command.

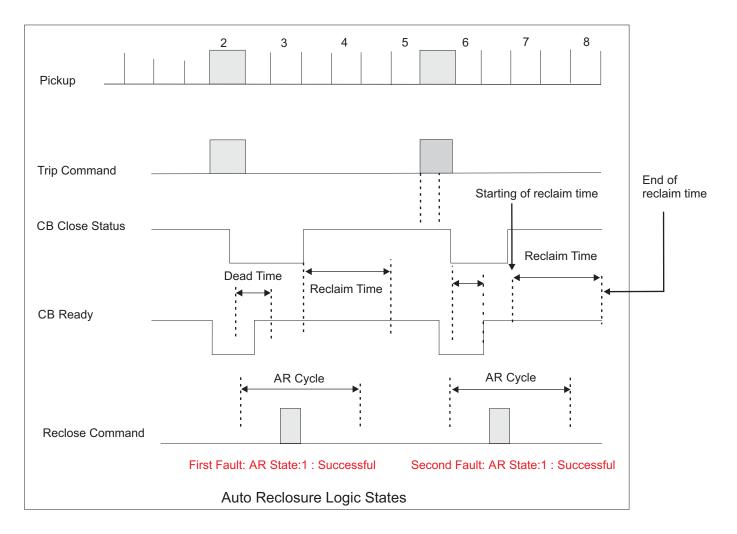
If the circuit breaker dose not trip again, the auto re-close cycle resets to original STATE-1 at the end of the reclaim time.

After Successful re-closure the relays goes to the lock out state.

- ◆ If the protection operates during the reclaim time of the relay:
- either advances to the next AR cycle that is expected in next auto re-close state or if all the programmed re-closer attempts have been accomplished, it locks out.

The reclaim time is started with the automatic closing command.

Once a CB has reclosed and remained closed for a specified time period (the reclaim time), the AR sequence is reinitialized and a successful close output issued. A single common reclaim time is used (Reclaim Timer). when an auto reclose sequence does not result in a Starting Condition for Auto recloser


- 1) AR should be enabled by manual setting.
- 2) AR blocked DI is not available
- 3) Respective protection AR cycle should not in exit condition.

Lock out State:

Lockout state of the breaker means no further attempts to AR in these conditions

- 1) Lockout occurs when all auto re-closure attempts are over and protection operates during the final Reclaim Time.
- 2) If CBFP failure appeared in relay (if CBFP enable).
- 3) At the end of the each reclaim timer if the CB is in the open position (Close DI is not present).
- 4) If a Close pulse of AR relay is given and the CB fails to close through close DI input or expiry of Trip Contact Sense time.
- 5) If a open pulse given to CB and CB fails to open in between Trip Contact Sense time.

In any of these cases, Manual reset will be required to reinitiate the AR.

Cold Load Pickup

This function aims to avoid non-desired trips in the following situation: after being the line de-energized for a period of time and re-energized later, the load exceed the protection setting without the presence of a fault. This may be due to the fact that the off period of all the loads (furnaces, heaters, coolers etc.) is elapse and they are all connected at the same time, producing a strong inrush current in the line, but which can be supported within certain time. This phenomenon can occur not only at the moment of the breaker manual closing, after having remained open for a certain time, but also with the breaker permanently closed due to the operation of another upstream breaker.

What the function does, is detecting when those conditions are given and changing the tripping settings during a programmable time.

The function is activated when the current in the 3 phases is below 0.08A, then the programmed time starts to run to determine that the load is cold (this time can be 0, what means that any circuit breaker opening could lead to the cold load situation). Once that time has expired and the current has not exceed again 0.15A, the protection usual setting values are replaced by the cold load pickup ones (cold load group settings). When any of the phase current exceed 0.15A a counter with programmable time starts, during which the setting are the cold load pickup ones (cold load group settings). When expiring this time, the settings are again the usual ones.

Harmonic Blocking

In the CSEZEN relays, starting of the phase current and earth current stage can be blocked under inrush conditions to avoid unsuitable trip during transformer magnetization.

As soon as the ratio of second harmonic component is above the programmed value (in percentage) then selected over current and earth protection will be blocked for a settable duration.

Circuit Breaker Failure Protection

The CB failure protection is based on supervision of phase currents and earth current after tripping events. The test criterion is whether all phase currents have dropped to less than 5% of Nominal value of rated current within the set time (tCBFP). If one or more of the phase currents have not dropped to specified current within this time, CB failure is detected and the assigned output relay is activated.

Trip Circuit Supervision

This feature detects any anomalies in the circuit with the switch open or close. It detects trip circuit supply failure of circuit breaker, tripping mechanism failure like circuit breaker contact degeneration in wires, contacts and coils.

Output Relay Latching

Any digital output can be latched. Reset of the latched output is possible by logic input front panel operator interface or by remote communication or through RESET key.

Blocking Logic

CSEZEN relay includes logic inputs, which can be configured to block the selected protection functions. Each protection functions can be locked via a digital input as selected and assigned.

Test of Output Relays

Select the TRIP TEST menu from HMI, then by using backward/forward key it will start operating the output relays & LEDs one by one unless the enter key is pressed again.

CB Control

In CSEZEN-F circuit breaker can be controlled remotely using configurable DIs as well as communication mode.

Setting Group

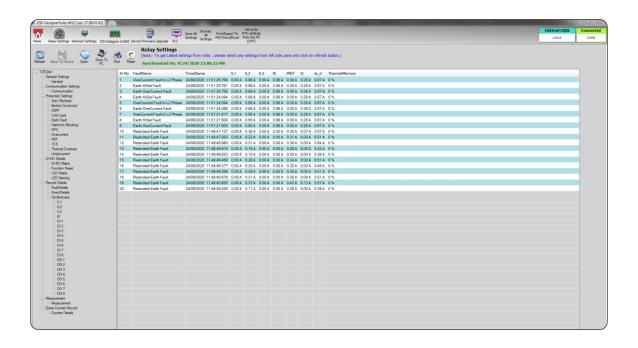
CSEZEN-F relays have two protection related setting groups. Changes between the groups are executed via the front interface, a dedicated logic input or through the communication port.

To avoid any undesirable tripping, the setting group change is only executed when none of the protection functions are running (deactivated or inhibited).

Time Synchronization

Inside CSEZen there is an internal time clock. Relay supports SNTP Protocol (ordering based). SNTP (Simple network Time Protocol) have mechanisms within the protocol to synchronize the clock and keep it accurate to certain accuracy. The protocol itself has the ability to send commands and re-synchronize the clock so that each attached IED using its synchronization capability on the network is accurate within resolution. The relay makes the synchronization automatically using SNTP protocol. The internal clock of the relay is synchronized to the UTC time of the NTP server.

8.0 Data Acquisition Function

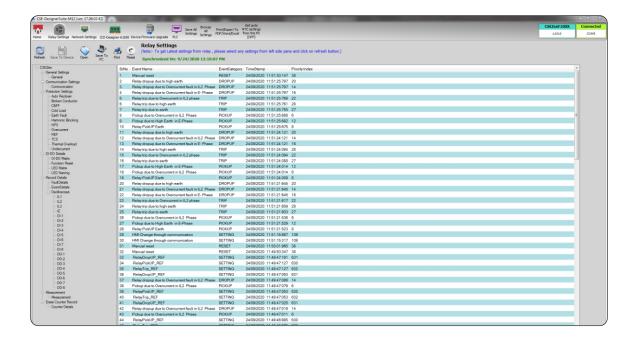

Measurement

- 3 Phase Current
- Earth current measurement
- Derived Earth current measurement
- Negative / Positive phase sequence current
- Trip counter
- Thermal memory
- AR cycles
- Restricted Earth current

9.0 Fault Record

CSEZEN-F records last 20 faults in its non volatile memory with its time stamp. Each record has the following information:

Fault Format		
lı1	:	XX.XXA
lı2	:	XX.XXA
Ііз	:	XX.XXA
le	:	XX.XXA
l 2	:	XX.XXA
Iref	:	XX.XXA
Them_mem	:	XXXX%
HRMIN	:	HH:MIN
SEC Ms	:	Sec: mSec
DATE	:	DD:MM:YY
F-TYPE	:	Type of fault

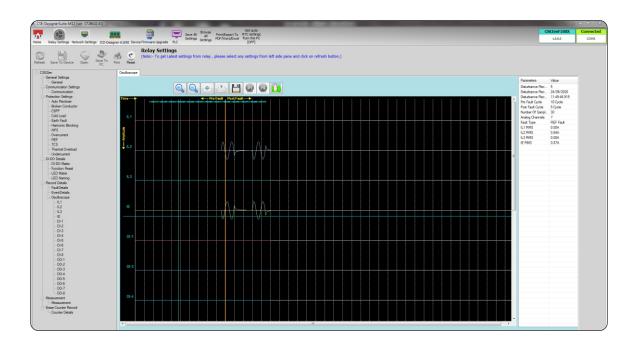


Fault Data recording on PC software

10.0 Event Record

The unit stores in non volatile memory the last 500 events with its time stamp. When the available memory space is exhausted, the new event automatically overwrites the oldest event, which can be retrieved from a PC.

The user can view event records via the front USB interface software.



Event Data recording on PC Software

11.0 Disturbance Record

The CSEZEN-F relay has an oscillograph data recorder with the following characteristics:

- Oscilloscopic recording can trigger on Pickup or on trip or via DI i.e. change from pre-fault to post-fault stage. It is programmable.
- Each record comprises the samples from max. 4 analog signals and the status of maximum 8 digital inputs and maximum 8 digital outputs. There will be 30 samples per cycle.
- Relay saves maximum 1200 cycles, and the number of cycles per record is programmable which limits the maximum no. of records possible to store in the relay (for example: if 40 cycles are selected, then there will be maximum 30 records of 40 cycles each).
- The pre-fault and post-fault cycles are programmable.
- Records are in the non volatile memory.
- The records are transferred to PC using USB interface. The data is graphically displayed and can be taken on printer.
- Record 1 is always latest record. 2nd record is older than 1st..... and so on.
- Disturbance record is available in comtrade format as per IEC60255-24.

Oscilloscope recording on PC software

12.0 Communication (Local & Remote)

The unit has:

- 1 Front USB port for direct connection to a PC
- 1 Rear RS-485 communication port
- 1/2 Rear Ethernet port (RJ-45) for IEC-61850

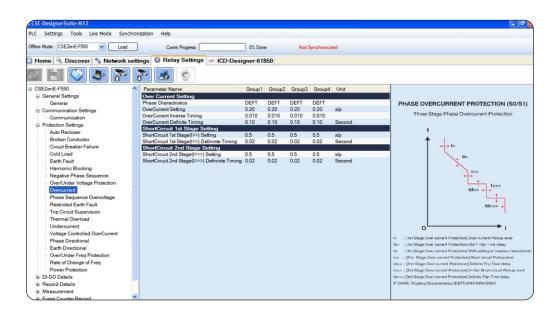
Dual Rear Communication (RS-485)

The choice of protocol for the rear port is based on ordering information. The user can choose either MODBUS or IEC-60870-5-103 protocol.

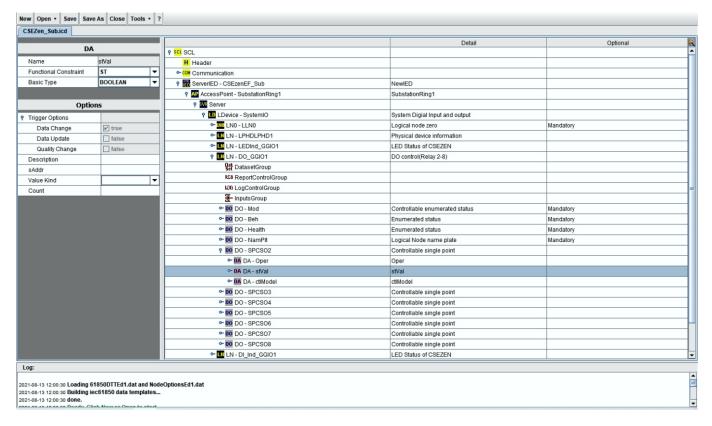
Front Communication (USB)

The entire setting including protection parameter setting for both group, Fault, Event & Disturbance record are available on Atype USB (female) interface with CSE LIVELINK with saving & printing option.

IEC-61850 Communication

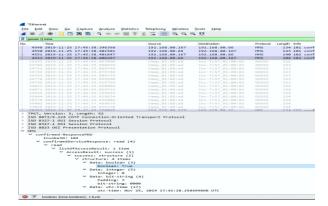

CSEZEN-F also supports operation information and controls communication protocols IEC-61850, Modbus. By this communication between relays, is only enabled by the IEC-61850 communication protocol.

The IEC 61850 communication implementation supports all monitoring and control functions.


The IEC 61850 protocol can be used to read or write static data or to receive events sent spontaneously from the relay. In addition, the interface allows peer-to-peer communication between the relays, known as GOOSE.

The IEC 61850 interface is configured with familiar, user-friendly CSE Designer M12 software.

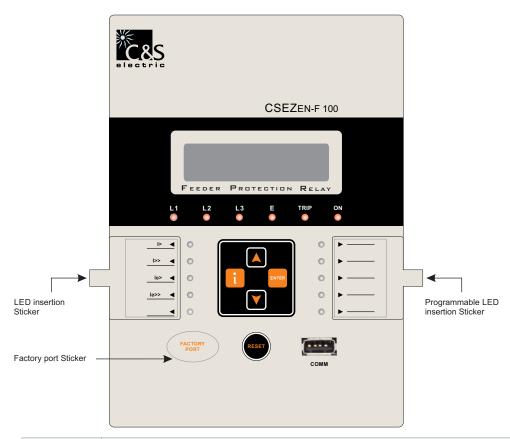
The IEC 61850 datamodel, data-sets, report control blocks and GOOSE communication are configured according to the requirements of the system configuration. CSE Designer M12 is also used to produce ICD files, which may be needed for the substation integration


CSEZEN IEDs come with a powerful Software suite to help reconfigure IEC61850 settings during installation

IEC 61850 Features

CSEZEN IEDs come with a powerful Software suite to help reconfigure IEC61850 settings during installation CSEZEN IEDs support the following IEC-61850 features:

- Creation & Reporting of Dynamic Datasets
- Full Buffered and Unbuffered Reports on all optional fields on all triggers, such as:
- GOOSE Publish and Subscribe on all IED parameters.
- Time Synchronization with Time Zone Support
- Supports all control schemes as defined by the standard.
- GOOSE parameter mapping to LED & Dos
- Support for metering parameters (Analog values)
 - > General Interrogation
 - Data Change
 - Data Update
 - Quality Change
 - > Integrity



22

13.0 Human Machine Interface

It comprises of bright LCD display

- Four push switches for setting values of normal tripping characteristics and other operations for local access.
- One RESET push switch.
- LEDs for pickup or tripping on fault and event in any phase.

Keys	Manual Key
i	is used as intelligent key to see the details of last fault and Relay status.
ENTE	is used as a ENTER key.
RESET	is used to manual reset (after pressing for 2 sec).
	is used to scroll in upward direction.
Y	is used to scroll in downward direction.

Output Contacts

Max. No. of digital outputs : 8 (DO1, DO2DO8) (1 change over)

Type of outputs : Relay Programmable (DO Assignment) : Yes

Relay reset type : Programmable (Auto/Manual)

Input Contacts

Max. No of digital inputs : 8 (DI1, DI2..... DI 8)

Type of inputs : AC/DC Voltage

Programmable (DI Assignment) : Yes

23

14.0 Setting Ranges

Over current Protection Setting

Parameters	Display	Setting Range		Step Size	Default	
		Min	Max		Setting	
I> pickup setting Stage-1	l>	0.05xlp	5.00xlp	0.01xlp	0.8xlp	
Phase trip characteristic	PCURVE	DEFT	EINV,VINV,LIINV,NINV1.3,	-	DEFT	
Stage-1			NINV3.0,NINV0.6			
ti> inverse timing Stage-1	ti>	0.01	1.5	0.005	0.05	
t> definite timing Stage-1	t>	000.10sec	150.00sec	0.01sec	000.10sec	
I>> pickup setting Stage-2	l>>	0.50xlp	40.00xlp	0.01xlp	1.2xlp	
t>> definite timing Stage-2	t>>	000.00sec	20.00sec	0.01sec	000.10sec	

(Table-1)

Under Current Protection Setting

Parameters	Display	Setting	g Range	Step Size	Default
	Min		Max	Otep Oize	Setting
Under Current Pickup Setting	 <	0.20xlp	1.00xlp	0.01xlp	Disable
Under Current Timing	t<	001.00sec	260.00sec	000.01sec	002.00sec
Under Current Threshold	ThrsSet	0.50xlp	1.00xlp	0.05xlp	0.50xlp

(Table-2)

Earth Fault Protection Setting

Parameters	Display	Settin	g Range	Step	Default
		Min	Max	Size	Setting
Earth pickup setting (1)	le>	0.05xIn	2.5xln	0.01xln	0.5xln
Earth characteristic	E-CURVE	DEFT	EINV,VINV,LIINV,NINV1.3,		
			NINV3.0, NINV0.6	-	DEFT
Earth inverse timing	tie>	0.010	1.500	0.005	0.050
Earth definite timing	te>	000.03sec	150.00sec	000.01sec	000.10sec
Earth hi-set pickup setting(2)	le>>	0.05xIn	20.00xln	0.01xln	0.8xln
Earth hi-set definite timing	te>>	00.00sec	20.00sec	00.01sec	00.10sec
Derived Earth current function	le_d> Function	Disable	Enable	-	Disable
Derived Earth current Pickup	le_d> Pickup	00.10xIn	15.00xln	00.01xln	01.00xln
Derived Earth current Def. time	le_d> Deft Time	00.02sec	100.00sec	00.01sec	00.10sec
Derived Earth current Hi-set	le_d>> Function	Disable	Enable	-	Disable
Derived Earth current Hi-set Pkup	le_d>> Pickup	00.10xln	15.00xln	00.01xln	01.00xln
Derived Earth Hi-set Def. time	le_d>> Deft Time	00.02sec	100.00sec	00.01sec	00.10sec

(Table-3)

Restricted Earth Fault Protection

Parameters	Display	Display Setting Range		Step	Default
		Min	Max	Size	Setting
REF pickup current	Iref>	0.2xIn	30xIn	0.01xln	Disable
REFtrip time	tref>	0 Sec	10 Sec	0.01Sec	1.0 Sec

(Table-4)

Cold Load Protection Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max	010p 0120	Setting
Cold load pickup	CLP PKUP	ENABLE	DISABLE	-	Disable
Cold load time	tcold	00000sec	1000sec	0.1sec	0001.0sec
Cold load pickup time	tclp	0.1sec	1000sec	0.1sec	0001.0sec
I> pickup setting Stage-1	>	0.20xlp	5.00xlp	0.01xlp	Disable
Phase trip characteristic	PCURVE	DEFT	EINV,VINV,I	_IINV,NINV1.3,	DEFT
Stage-1			NINV3.0,NIN	1V0.6	
ti> inverse timing Stage-1	ti>	0.01	1.5	0.005	0.050
t> definite timing Stage-1	t>	000.10sec	150.00sec	0.01sec	000.10sec
I>> pickup setting Stage-2	>>	0.50xlp	40.00xlp	0.01xlp	Disable
t>> definite timing Stage-2	t>>	000.02sec	20.00sec	0.01sec	000.10sec
le> pickup setting Stage-1	le>	0.05xln	2.5xln	0.01xln	Disable
Earth characteristic	E-CURVE	DEFT	EINV,VINV,LIIN NINV3.0, NINV	· ·	DEFT
Earth inverse timing	tie>	0.010	1.500	0.005	0.050
Earth definite timing	te>	0.03sec	150.0sec	0.01sec	0.10sec
Earth hi-set pickup setting	le>>	0.05xIn	20.0xln	0.01xln	Disable
Earth hi-set definite timing	te>>	00.02sec	20.0sec	0.01sec	0.10sec

(Table-5)

Trip Circuit Supervision Setting

Parameters	Display	Setting	Range	Step Size	Default	
		Min	Max		Setting	
Trip circuit supervision	td	0.03sec	2.00sec	0.01sec	Disable	

(Table-6)

Negative Phase Sequence Protection Setting

Parameters	Display Setting Range		Step Size	Default	
		Min	Max		Setting
NPS Pickup Setting	I2> Pickup	0.10xlp	1.00xlp	0.01xlp	Disable
NPS Trip Characteristic	I2> Characteristics	DEFT	INVERSE	-	DEFT
Time Multiple	K1 TD Multiplier	05	600	01	05
Definite Time Delay	t2> Deft time	00.1sec	600.0sec	00.1sec	00.2sec

(Table-7)

Circuit Breaker Failure Protection Setting

Parameters	Display	Setting	Range	Step	Default
		Min	Max	Size	Setting
Circuit breaker failure protection time delay	tCBFP	0.03sec	2.00sec	0.01sec	Disable

(Table-8)

Harmonic Blocking Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Phase 2nd harmonic block	P2ndH	10%lf	50%lf	1%If	Disable
Phase 3rd harmonic block	P3rdH	10%lf	50%lf	1%If	Disable
Earth 2nd harmonic block	E2ndH	10%lf	50%lf	1%If	Disable
Earth 3rd harmonic block	E3rdH	10%lf	50%lf	1%If	Disable
Phase blocking time	tPHASE	00.00sec	20.00sec	00.10sec	00.00sec
Earth block time	tEARTH	00.00sec	20.00sec	00.10sec	00.00sec

(Table-9)

Active Group Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Active Group	ACTIVE	GROUP1	GROUP2	-	GROUP1

(Table-10)

Broken Conductor Protection Setting

Parameters	Display	Settin	g Range	Step Size	Default
		Min	Max	0.0000.20	Setting
NPS to PPS Ratio	I2/I1 Ratio	0.10	0.50	0.01	Disable
Definite Time for broken conductor fault	(BC)Deft Time	0.05sec	20.00sec	0.01sec	0.10sec

(Table-11)

Auto Re-closer Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Blocking of Auto-recloser	FUN ENB	NO	YES	-	NO
Set Dead Time-1	D1	000.20sec	300.00sec	000.01sec	000.20sec
Set Dead Time-2	D2	000.2sec	300.00sec	000.01sec	000.20sec
Set Dead Time-3	D3	000.2sec	300.00sec	000.01sec	000.20sec
Set Dead Time-4	D4	000.2sec	300.00sec	000.01sec	000.20sec
Set Reclaim Time	tR	000.2sec	300.00sec	000.01sec	000.20sec
Cycle I>	Cyc I>	2	4/Disable	1	2
Cycle I>>	Cyc I>>	2	4/Disable	1	2
Cycle le>	Cyc le>	2	4/Disable	1	2
Cycle le>>	Cyc le>>	2	4/Disable	1	2
Trip sense time	t_TST	0.05sec	2.00sec	0.01sec	0.10sec

(Table-12)

Thermal Replica Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Thermal memory mode	MemMod	M1	M2/M3	-	M1
Permissible basic current	lb	0.20xlp	4.00xlp	0.02xlp	Disable
Constant	k	0.50	2.00	0.01	1.00
Heating time constant	Th	000.5min	180.0min	000.1min	000.5min
Cooling constant	Tc	1.00xTh	8.00xTh	0.01xTh	1.00xTh
Thermal alarm	Alrm_R	20%	99%	1%	20%
Thermal reset	TH_Rst	20%	99%	1%	50%

(Table-13)

Sensitive Earth Over Current Setting

(Model dependent)

Parameters	Display	splay Setting Range		Step	Default
		Min	Max	Size	Setting
Phase Characteristics	Curve Type	DEFT	EINV, VINV,		
	, ,		NINV1.3, LINV		
			NINV3.0,		
			NINV0.6		DEFT
le> Current Setting	le> Pickup	0.01 Amp	1.5 Amp	0.01 Amp	0.1Amp
le> inverse timing	le> TD Multiplier	0.01 sec	1.5 sec	0.005 sec	0.1 sec
le> Definite timing	le> Deft Time	0.03 sec	150 sec	0.01 sec	0.03 sec
le>> Current Setting	le>> Pickup	0.01Amp	1.5 Amp	0.01 Amp	0.1 Amp
le>> Definite timing	le>> Deft Time	0.03 sec	150 sec	0.01 sec	0.03 sec

(Table-14)

DO Assignment

Parameters	Display
Over current alarm	al>
Over current trip	tl>
Short circuit stage alarm	al>>
Short circuit stage trip	tl>>
Earth protection alarm	ale>
Earth protection trip	tle>
Earth high protection alarm	ale>>
Earth high protection trip	tle>>
Restricted Earth Fault alarm	aREF
Restricted Earth Fault trip	tREF
Derived Earth Fault Stage-1 Alarm	aDE1
Derived Earth Fault Stage-1 Trip	tDE1
Derived Earth Fault Stage-2 Alarm	aDE2
Derived Earth Fault Stage-2 Trip	tDE2
Negative phase sequence protection alarm	al2>
Negative phase sequence protection trip	tl2>
Thermal alarm	TH Alm
Thermal relay	TH trp

Parameters	Display
Auto re-close	AR CLS
Auto re-close lockout	Arlock
Trip circuit supervision	TCS
Circuit breaker failure protection	CBFP
Self supervision	SLF SU
Under current protection alarm	al<
Under current protection trip	tl<
Broken conductor protection alarm	aBC>
Broken conductor protection trip	tBC>
Remote trip-1	RmtTp1
Remote trip-2	RmtTp2
Remote trip-3	RmtTp3
Remote trip-4	RmtTp4
Remote trip-5	RmtTp5
Remote trip-6	RmtTp6
DO Block	DOBIk

(Table-15)

LED Assignment

Parameters	Display
Over current alarm	al>
Over current trip	tl>
Short circuit stage alarm	al>>
Short circuit stage trip	tl>>
Earth protection alarm	ale>
Earth protection trip	tle>
Earth high protection alarm	aE>>
Earth high protection trip	tE>>
Negative ph. seq. protection alarm	al2>
Negative ph. seq. protection trip	tl2>
Restricted earth fault protection alarm	aRE>
Restricted earth fault protection trip	tRE>
Derived Earth Fault Stage-1 Alarm	aDE1
Derived Earth Fault Stage-1 Trip	tDE1
Derived Earth Fault Stage-2 Alarm	aDE2
Derived Earth Fault Stage-2 Trip	tDE2
Broken conductor protection alarm	aBC>
Broken conductor protection trip	tBC>
Thermal trip	Thtp
Thermal alarm	Thal

Parameters	Display
Auto re-close	ARCL
Auto re-close lockout	Arlk
Trip circuit supervision	TCS
Circuit breaker failure	CBFP
Self supervision	SLFS
Under current protection alarm	al<
Under current protection trip	tl<
Remote trip-1	RmT1
Remote trip-2	RmT2
Remote trip-3	RmT3
Remote trip-4	RmT4
Remote trip-5	RmT5
Remote trip-6	RmT6
Common Block	Cblk
Common Pickup	CmPk
Common Trip	CmTr
Healthy LED	Hled
Out of Service	Oofs

(Table-16)

DI Assignment

Parameters	Display
Circuit breaker close	CB Cls
Circuit breaker open	CB Opn
CB Ready	CB Rdy
Remote trip-1	RmtTp1
Remote trip-2	RmtTp2
Remote trip-3	RmtTp3
Remote trip-4	RmtTp4
Remote trip-5	RmtTp5
Remote trip-6	RmtTp6
Group toggle	GRP tog
Remote reset	RmtRst
Oscillator trigger	OSC Tg

Parameters	Display
Over current block	I> BLK
Short circuit stage1 block	I>> BK
Earth block	E> BLK
Earth high block	E>> BK
Auto re-close block	AR BLK
Thermal block	Th BLK
Cold load pickup block	CldBLK
Restricted earth fault block	REF>BK
Derived Earth Fault Stage-1 Block	DRV1BK
Derived Earth Fault Stage-2 Block	DRV2BK
Under current block	I <blk< td=""></blk<>
Negative phase sequence block	I2> BLK
Broken conductor block	BC BLK

(Table-17)

Function Reset

Parameters	Display
Over current alarm	al>
Over current trip	tl>
Short circuit stage alarm	al>>
Short circuit stage trip	tl>>
Earth protection alarm	ale>
Earth protection trip	tle>
Earth high protection alarm	ale>>
Earth high protection trip	tle>>
Neg. ph. seq. protection alarm	al2>
Neg. ph. seq. protection trip	tl2>
Rest. earth fault protection alarm	aREF
Rest. earth fault protection trip	tREF
Derived Earth Fault Stage-1 Alarm	aDE1
Derived Earth Fault Stage-1 Trip	tDE1
Derived Earth Fault Stage-2 Alarm	aDE2
Derived Earth Fault Stage-2 Trip	tDE2

Parameters	Display
Thermal alarm	Thm Alrm
Thermal trip	Thm Trip
Auto relose	AR Close
Trip circuit supervision	TCS
Under current protection alarm	al<
Under current protection trip	tl<
Broken conductor protection alarm	aBC>
Broken conductor protection trip	tBC>
Remote trip-1	RmtTrp1
Remote trip-2	RmtTrp2
Remote trip-3	RmtTrp3
Remote trip-4	RmtTrp4
Remote trip-5	RmtTrp5
Remote trip-6	RmtTrp6
DO Block	DOBIk

(Table-18)

Erase Counter Record Setting

Parameters	Display	Display Setting Range		Step Size	Default
		Min	Max		Setting
Trip Count	Trip_Cntr	NO	YES	-	NO
Thermal Memory Reset	ThrmLRset	NO	YES	-	NO
Erase Events	EventsErase	NO	YES	-	NO
Erase Faults	FaultsErase	NO	YES	-	NO
Oscillator Record Erase	OscRcrdEras	NO	YES	-	NO

(Table-19)

Common Setting

These are the settings common for all the protections:

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Phase Rated Current	lp	1.00Amp	5.00Amp	-	1.00Amp
Earth Rated Current	In	1.00Amp	5.00Amp	-	1.00Amp
Phase CT Ratio	Ph CTR	001	9999	1	001
Earth CT Ratio	E CTR	001	9999	1	001
Nominal Frequency	FREQ (Fn)	50Hz	60Hz	10Hz	50Hz
Fault Message Status	[F]Stat	Disable	Enable	-	Disable
Event Function	EVNTfun	Disable	Enable	-	Disable
Out of Service	OutofSer	Disable	Enable	-	Disable

(Table-20)

Disturbance Record

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Oscilloscope recording selection	RECORD	NO	YES	-	NO
Pre-fault cycle	PRE CYCLE	002C	298C	1C	002C
Post-fault cycle	POST CYCL	002C	298C	1C	002C
Triggering mode	TRIG MODE	PK-UP	PK-UP/TRIP/DI/	-	PK-UP
			Anyone		

(Table-21)

Rear Communication (Model dependent)

Parameters		Default Setting
Baud rate selection (programmable)	9600 / 19200 / 38400 bps	9600 bps
Parity selection (programmable)	EVEN / ODD / NONE	NONE
Stop bit	1 Bit	1 Bit
Data bit	8 Bit data	8 Bit data
Remote address (programmable)	254	1
Cable required for Interface	Two wire twisted shielded cable	

(Table-22)

Front Communication

Protocol	CSE Proprietary Protocol: available with front software
Baud rate	19200 bps
Cable required for Interface	USB cable type (Mini - A to A)

(Table-23)

15.0 Technical Data

Measuring Input

Rated Data	Rated current In:1A or 5A
	Rated frequency Fn : 50 Hz / 60 Hz
Drop out to Pickup Ratio	>96%
Reset Time	30mSec
AC Current	At In=1A <0.1 VA
VA Burden	At In=5A <0.2 VA
AC Voltage	
VA Burden	At Vn=110V <0.06 VA
Thermal withstand capability	Dynamic current withstand
in current circuit	for 1 Sec : 100 x In
	for 10 Sec : 30 x In
	continuously : 4 x In

(Table-24)

Trip Time Accuracy for Current Protections

Parameters	Accuracy
Trip time accuracy for protections except NPS & REF	±30mSec OR ±5% (whichever is higher)
Trip time accuracy for NPS	±60mSec OR ±7.5% (whichever is higher)
Trip time accuracy for REF	Corresponding to error generated by inaccuracies in each phase <u>+</u> 30mSec OR <u>+</u> 5% (whichever is higher)

(Table-25)

Measurement Accuracy

Parameters	Range	Frequency Range	Accuracy
Current in Ampere	1.0-30xIn	50-60Hz	Less than <u>+</u> 2%

(Table-26)

Common Data

Dropout ratio	> 96%
Relay reset time	30 ms
Minimum operating time	30 ms
Transient overreach at instantaneous operation	≤5 %

(Table-27)

Trip Contact Rating

Contact rating	
Contact relay	Dry contact Ag Ni
Make current	Max. 30A & carry for 3S
Carry capacity	8A continuous
Rated voltage	250V AC / 30V DC
DC Current carrying capacity	8A@30VDC / 0.3A@110VDC/ 0.2A@220VDC
Breaking characteristics	
Breaking capacity AC	1500VA resistive
	1500VA inductive (PF=0.5)
	220V AC, 5A (cosØ=0.6)
Breaking capacity DC	135V DC, 0.3A (L/R=30ms)
	250V DC, 50W resistive or
	25W inductive (L/R=40ms)
Operation time	<10ms
Durability	
Loaded contact	10,000 operation minimum
Unloaded contact	30,000 operation minimum

(Table-28)

Auxiliary Supply

Rated auxiliary voltage UH	For L Model	18V-150V DC <u>+</u> 10%	
	For H Model	80V-280V AC / 90V-300V DC <u>+</u> 10%	
	For U Model	40V-280V AC / 18V-300V DC <u>+</u> 10%	
Rated supply for digital input	Normal Voltage UN	40V-280V AC (Active)	
	For H Model	40V-300V DC (Active)	
		<25V AC (Inactive)	
		<25V DC (Inactive)	
	Normal Voltage UN	18V - 150V DC (Active)	
	For L Model	<10V DC (Inactive)	
	Normal Voltage UN	>22V DC onwards	
	For U Model	>50V AC onwards	
Power consumption	Quiescent approx. 3W	Operating approx. <7W	

(Table-29)

Date & Time Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Hour	HOUR	0	23	1	
Minute	MIN	0	59	1	
Second	SEC	0	59	1	
Date	DATE	1	31	1	
Day	DAY	SUN	SAT	1	
Month	MONTH	Jan	Dec	1	
Year	YEAR	00	99	1	

(Table-30)

Specification Table of CSEZEN-F 100x-V2

Function	ANSI	Model - x
CT Configuration	_	3 OC+EF+REF
3 Phase Over current	50/51P	✓
3 Phase instantaneous Over current	50	✓
Ground Time Over current	50N	✓
Ground Time instantaneous Over current	50N	✓
Derived Earth Over current	50N	✓
Negative Phase Seq. Over current	46	✓
Broken Conductor	46BC	✓
Auto Re-closer	79	✓
Cold Load Pickup	62 CLD	✓
Thermal Over-load	49	✓
3 Phase under current	37P	✓
Restricted Earth (High impedance)	64R	✓
Harmonic Blocking	50H	✓
Trip Circuit Supervision (TCS)	74TC	✓
CBFP	50BF	✓
Output Relay Latching	86	✓
Self Supervision	_	✓
Current Analog Input	-	4
Fault Record	_	20
Event Record	-	500
Disturbance Record	-	✓
Selection of 1/5A (Site selectable)	-	✓
Digital Input	-	8
Digital Output	-	8
Alpha numeric LCD Display	-	16x2
LEDs for Pickup & Trip on fault	_	16
Push Button for HMI	_	5
Draw out Enclosure		
with self CT shorting	_	✓
Front Communication	_	✓
Rear Communication (RS-485/RJ-45)		
(ordering based)	-	✓

(Table-32)

16.0 Standards

Туре	Type Test				
F1	Functional Tests	Internal Design	Performance in line with Specification & Standards		
			Pickup/Drop down/Power consumption in		
		Specifications &	Current/Voltage/Aux Supply/Trip timing accuracy: OC/		
		IEC60255-6	EF/NPS/Thermal		
		IEC60255-3			

atic Test		
Temperature Dry Cold	IEC 60068-2-1	-20 deg C, 96 hours
(Relay operational)		
Temperature Dry Cold	IEC 60068-2-1	-25 deg C, 96 hours
Transportation & Storage		
Temperature Dry Heat	IEC 60068-2-2	55 deg C, 96 hours
(Relay operational)		
Temperature Dry Heat	IEC 60068-2-2	70 deg C, 96 hours
Transportation & Storage		
Damp Heat Test	IEC 60068-2-18	95% @ +55 / +25 deg C, 6 cycle (12hr + 12hr each)
(Relay operational)		
	Temperature Dry Cold (Relay operational) Temperature Dry Cold Transportation & Storage Temperature Dry Heat (Relay operational) Temperature Dry Heat Transportation & Storage Damp Heat Test	Temperature Dry Cold (Relay operational) Temperature Dry Cold Transportation & Storage Temperature Dry Heat (Relay operational) Temperature Dry Heat Transportation & Storage IEC 60068-2-2 (Relay operational) Temperature Dry Heat Transportation & Storage Damp Heat Test IEC 60068-2-18

Encl	osure		
C6	Enclosure	IEC 529	Front IP54 (Dust 5x + Water x4)

Mechanical Test

Relay Operational			
M1	Vibration response / Endurance test	IEC 60068-2-6	Class I Vibration response (Relay operational) 10Hz~150 Hz - peak displacement 0.035 mm below 58/60 Hz, 0.5 g above, 1 sweep cycle in each axis Vibration endurance (Relay de-energised)
M2	Shock Response / Withstand Test	IEC 60255-21-1	10 Hz~150 Hz 1g, 20 sweep cycles in each axis Class I Shock response (Relay operational) 5g 11mS 3 pulse in each axis Shock withstand (Relay de-energised) 15g 11mS 3 pulses in each axis
M3	Bump	IEC 60255-21-1	Bump (Relay de-energised) 10g 16mS 1000 pulses in each axis
M4	Seismic	IEC 60255-21-3	Class I Method A single axis sine sweep 1 Hz~35 Hz–below 8/9 Hz 3.5 mm peak displacement horizontal axis, 1.5 mm vertical axis above 8/9 Hz 1g horizontal, 0.5 g vertical 1 sweep cycle in each axis

Elec	Electrical Test				
E1	Insulation Resistance >100MΩ	IEC 60255-5	500V DC, 5 sec between all terminals & case earth, between terminals of independent circuits including contact circuits and across open contacts		
E2	DC & AC Supply Voltage (Relay operational)		IEC 60255-6 Voltage range, upper & lower limit continuous withstand, ramp up & down over 1 minute		
E3	Voltage Dips, Short Interruptions & Voltage variations immunity (Relay operational)	IEC 1000-4-11	IEC 60255-113 Dips & 3 Interruptions at 10 sec intervals of duration between 10mS and 500mS at zero crossings & at other points on wave Variation: 100% to 40% over 2s, hold for 1s, return to 100% over 2s		
E4	Ripple in DC supply (Relay operational)	IEC 60255-11	12% AC ripple		
E5	Dielectric Test (Relay de-energised) No breakdown or flash over Test voltage 45~65 Hz sinusoidal or with DC voltage at 1.4x the stated AC values	IEC 60255-5	2.0 KV @ 1min All circuit to Earth / Between IP & OP		
E6	High Voltage Impulse (Relay de-energised)	IEC 60255-5	5 kV peak 1.2/50uS, 0.5 J-3 positive, 3 negative between all terminals to case earth between independent circuits		
E7	VT Input Thermal Withstand		1.5xVn, continuous		
E8	CT Input Thermal Withstand		250xln half wave 100xln for 1 second 30xln for 10 second 4xln continuously		
E9	Contact performance & endurance tests	IEC 60255-14,15 IEC 60255-1			

Elec	ctro-magnetic Compatibility				
R1	Electrical fast Transient/Burst (Relay operational)	IEC 60255-22-4 IEC 61000-4-4	Class IV- ±4.0 kV All Circuits. Pulse 5/50nsec/Duration 15msec/ Period: 300msec/Pulse Freq: 5KHz / 2KV at I/O		
R2	HF Disturbance Test (Oscillatory Waves) 1 MHZ Burst (Relay operational)	IEC 60255-22-1	Class III Longitudinal 2.5 kV peak, 2sec between independent circuits & case earth		
R3	Electrostatic Discharge (Relay operational)	IEC 60255-22-2 IEC 61000-4-2	Class III 8kV air discharge, 6KV contact No of Discharge : 10 both polarities at 1 sec intervals		
R4	Conducted Disturbance RF fields (Relay operational)	IEC 61000-4-6 IEC 60255-22-6	0.15 to 80 MHz (Level-3) Severity Level 10V RMS + sweeps 0.05-0.15 MHz & 80-100 MHz		
R5	Radiated RF E-M field immunity test (Relay operational)	IEC 60255-22-3 IEC 61000-4-3	Class III Test method A + sweep 80-1000 MHZ or IEC 1000-4-3 80-1000 MHZ severity 10 V/m 80% modulated 1 kHz		
R6	Surge Immunity capacitively coupled (Relay operational)	IEC 61000-4-5 Class 5 Test level 4 IEC 60255-22-5: 2008 Latest: IEC 60255-26:2013	Short circuit combination wave generator 1.2 uS/50 uS open circuit repetition rate 1 per minute Power supply, CT & VT circuits – 4kV common mode 2 Ohm source 2kV differential mode 12 Ohm source		
R7	Power Frequency Magnetic Field (Relay operational)	IEC 61000-4-8	100 A/m for 1 minute in each of 3 axes		
R8	Conducted & Radiated RF Interference Emission (Relay operational)	EN55011 IEC 60255-25	CISPR11/ Class A		
R9	Power Frequency, conducted common mode	IEC 1000-4-16 IEC 60255-22-7	D.C. to 150 kHz Test Level 4 300V at 16 2/3 Hz and 50 Hz		

17.0 Recommended Terminal Lugs Specifications

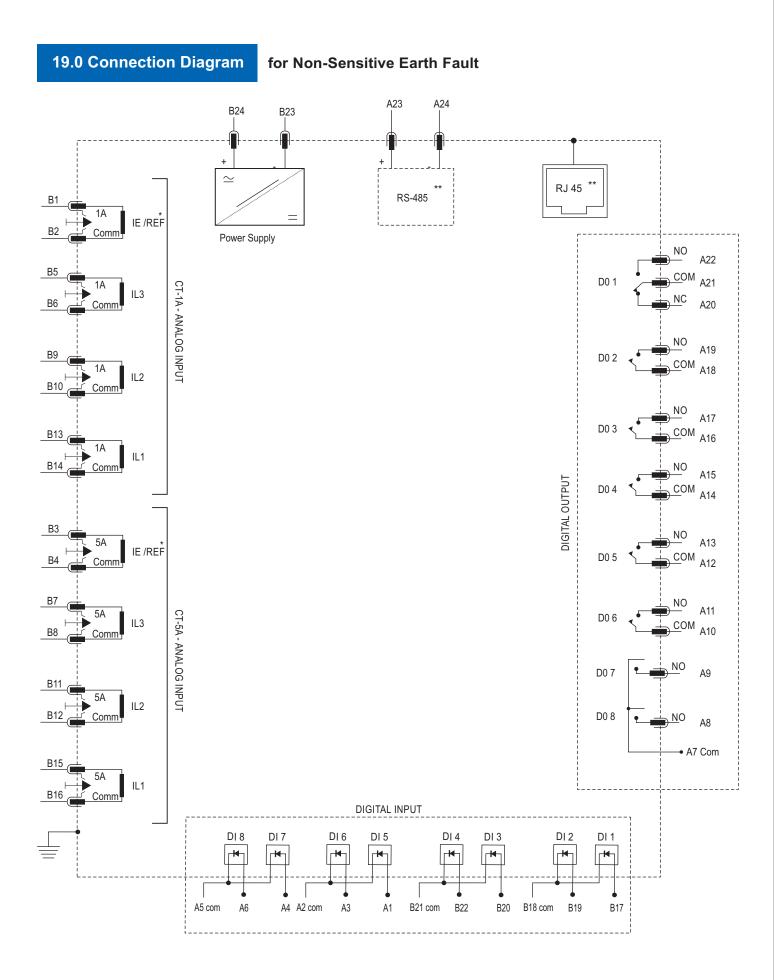
Term Blocks	Type/Cable Specifications	
Current Inputs	Ring Type lug / 2.5mm² or 4 mm² control cable	
Auxiliary Supply	Pin Type lug / 1.5 mm² / 2.5 mm² control cable	
Rear Comm. Port	Pin Type lug / 1.5 mm² / 2.5 mm² control cable	
Front Comm. Port	USB, Type - A to A	
Binary Input	Pin Type lug / 1.5mm² / 2.5mm² control cable	
Binary Output	Pin Type lug / 4.0mm² control cable	
Earth Connections	Ring Type / 2.5mm² or 4 mm² contact cable	

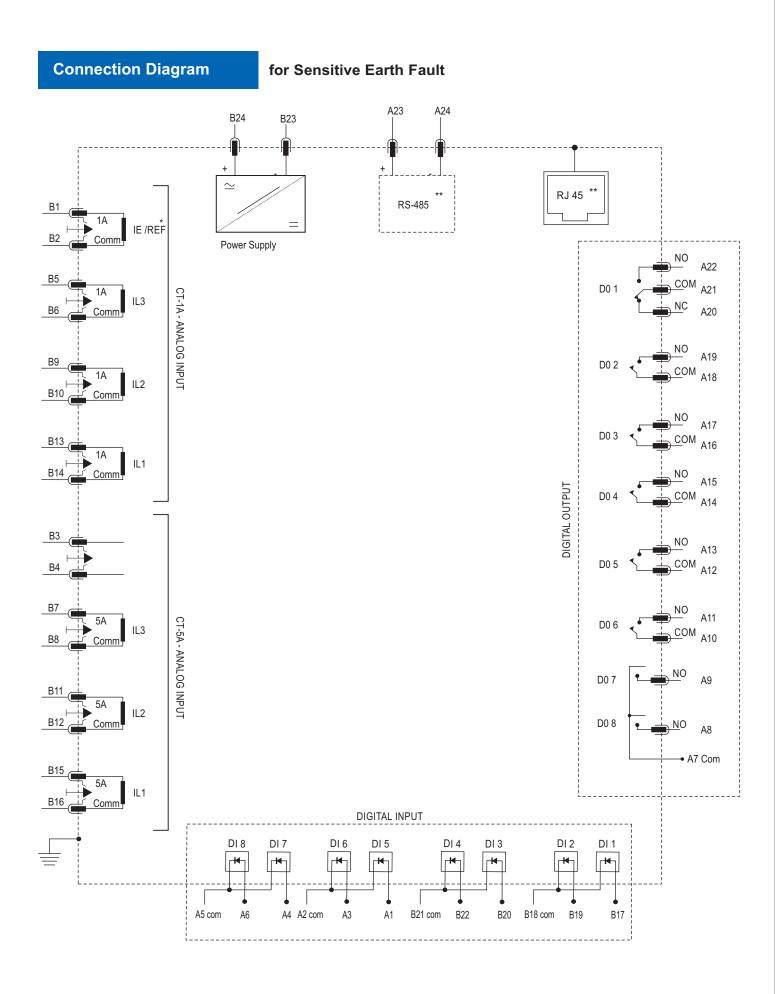
Cable required for Front USB Communication (Type A to A)

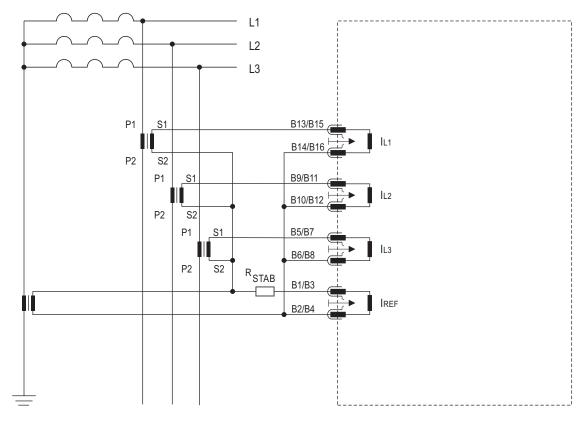
Additional Accessories (Not a part of standard supply)

18.0 Draw out process of the Relay

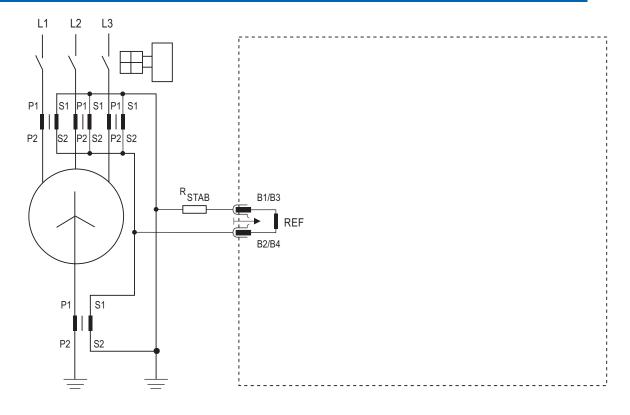
First Open the screw fitted with Bezel using the appropriate screw driver then hold the Eject Handle.


Use the Eject handle to bring out the Relay from the enclosure as shown in the left image.



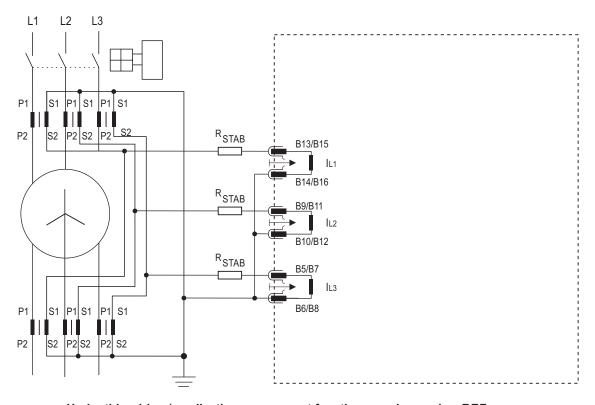

Bring out the Relay gently by dragging it outside, extra pressure can be the cause of relay damage.

Similarly while bringing in the Relay, Handle should be in uplift condition.

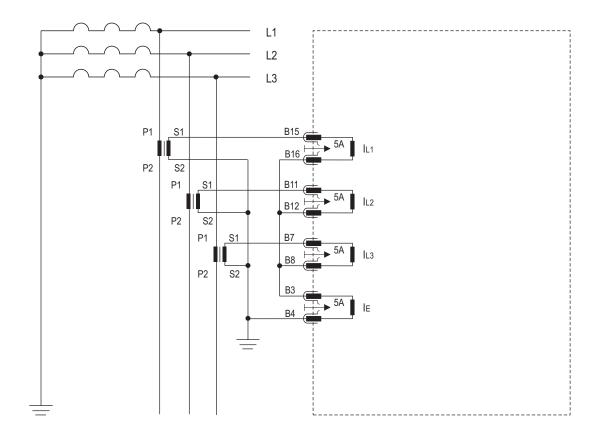


20.0 CT Conn. Diagram [3 OC + 1 REF (Calculated from derived earth)]

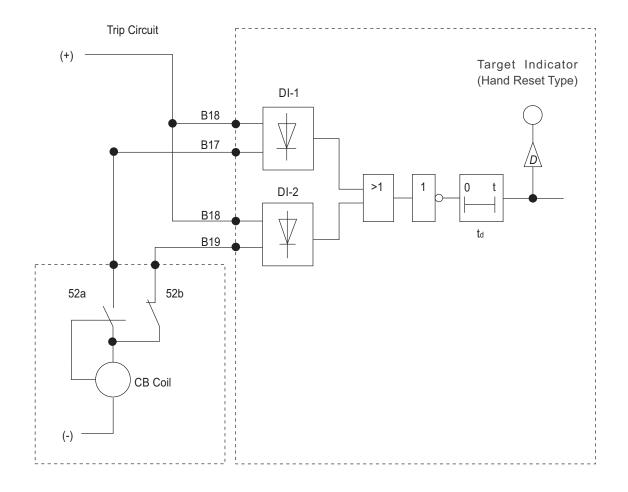
CT Connection Diagram for High Impedance REF Application


21.0 Conn. Diagram [Zero current differential protection of Star point winding]

Earth fault protection will be offered only from derived earth of three phase line current.

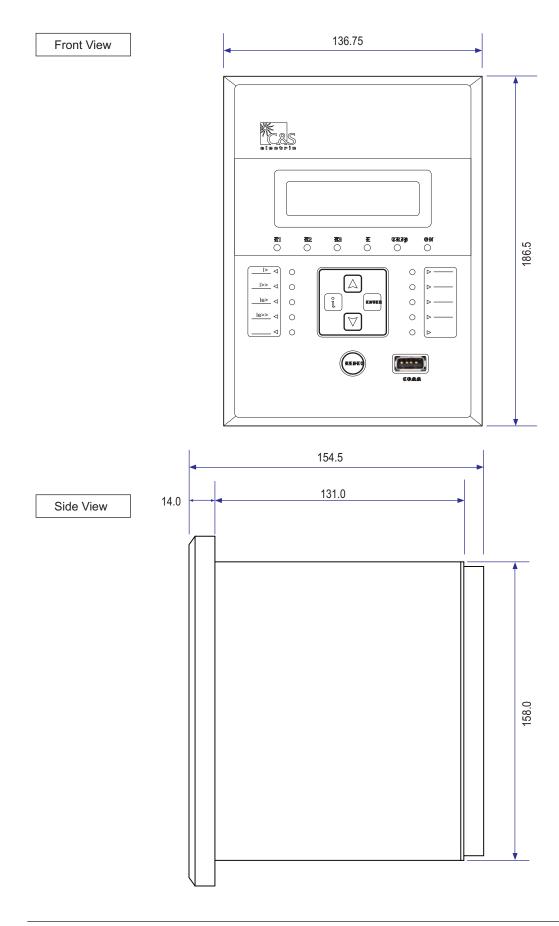

42

22.0 Conn. Diagram of Highly stabilized differential protection for Motor, Generator & Alternators

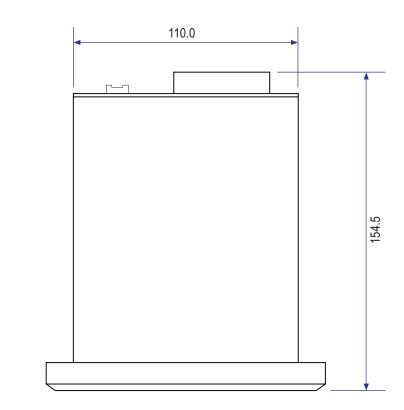


Under this wiring / application over current functions can be used as REF.

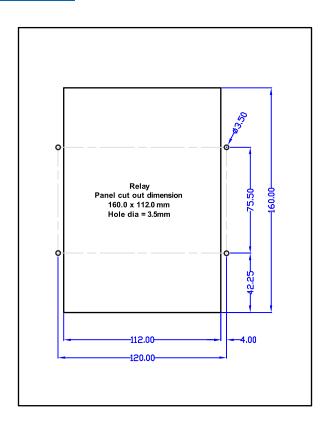
23.0 CT Connection Diagram [3 OC + EF]

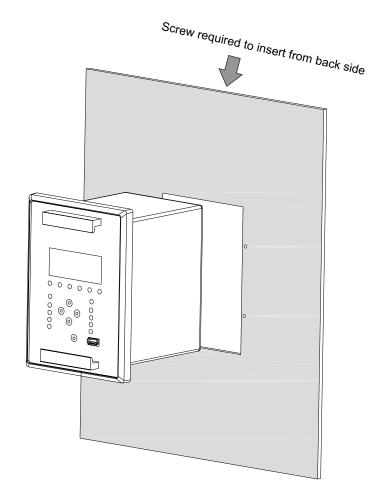

24.0 Trip Circuit Supervision Diagram

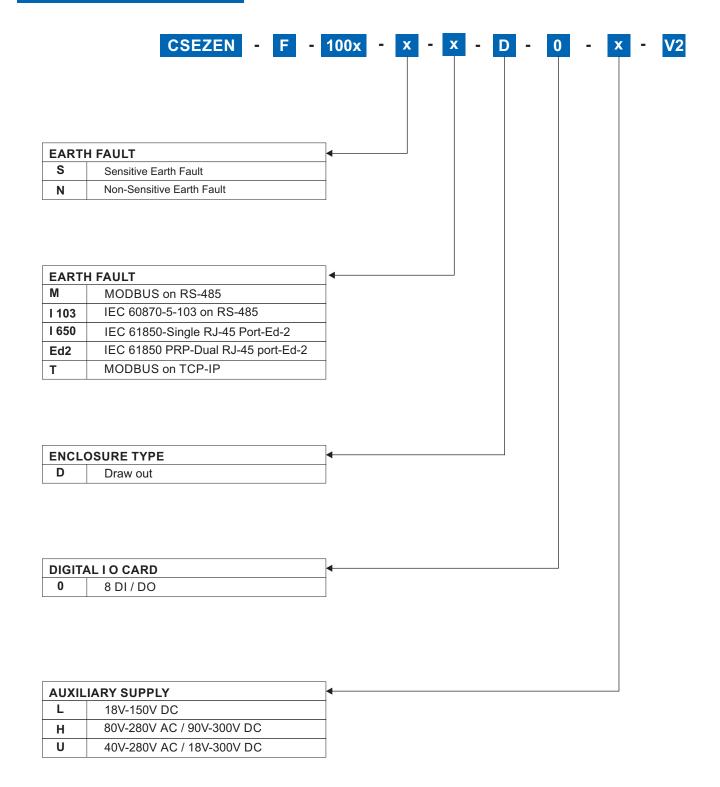
(Trip Circuit Supervision Function)


All the dim are in mm (Gen. Tol + 1.0mm)

25.0 Dimensional Details


Top View


Dimension Details contd..


Back View *

26.0 Panel Mounting Details

27.0 Ordering Information

Issue Date : 29.09.20 Rev. No : 12 Rev. Date : 28.10.25

NOTE

The content in this document are not binding and is for general information. C&S reserves the right to change the design, content or specification contained in this, without prior notice.

Revision History

S.No.	Rev.No.	Details	Date
01	01	Add REF diagram for transformer differential on page 9	27.05.21
02	02	Add conn diagram zero current & highly stabilized differential protection for transformer differential	28.05.21
03	03	Add row event function in common setting table on page 29	05.07.21
04	04	Include IEC 61850 details on page 21 & page 22 of the catalog	02.02.22
05	05	On Page 21 & 22 modification done for IEC 61850 information	13.04.22
06	06	Change in ordering information (removed on Dual RJ-45, Ed-2)	15.09.22
07	07	Include Universal (U) aux supply range in order info & aux. supply settings on page 33	
08	08	Include U range for DI of Aux supply on page 33 of Aux supply	
09	09	Include Edition-1 & Edition 2 Rear communication protocol option in ordering information on page-47	
10	10	Change in details of Communication section (S.No. 12) on page 21	26.03.24
11	11	Change in min setting of T>> & Te>> from 0.02 to 0.00 sec in Table 1, Table 3 of page 24	25.12.24
12	12	Include one more conn diagram for Sensitive Earth Fault on page 41	27.10.25