CSENEX-U-200

Intelligent Measuring and Protection Device

Catalog

PMD Division

CONTENT

S.No. Description

- 1. Introduction
- 2. Application
- 3. Protection Features
- 4. Supervision Functions
- 5. Hardware
- 6. Functional Diagram
- 7. Protection Functions
- 8. Data Acquisition Functions
- 9. Fault Record
- 10. Event Record
- 11. Human Machine Interface
- 12. Communication (Local & Remote)
- 13. Setting Ranges
- 14. Technical Data
- 15. Type Test
- 16. Connection Diagram
- 17. Dimension Details
- 18. Ordering Information

1.0 Introduction

CSENEX-U Series relays provide reliable and high performance protection.

The CSENEX-U 200 is a relay for AC voltage supervision with universal application; it protects the three phase network against over, under voltage, unbalance or earth faults in isolated networks. Beside the pure RMS value measurement of the line voltage the CSENEX-U 200 can detect the phase sequence, voltage unbalance and earth faults.

- Draw out enclosure have modular design
- Measurement & Protection
- DO Matrix Programmability
- Intelligent key for DO status, details of fault pickup & status of last fault occurred
- ♦ Suitable for Star & Delta configuration
- ♦ CSENEX-U relays are equipped with self supervision function
- ◆ Last 10 fault record (non-volatile memory) with time stamp
- ◆ Last 50 event record (non-volatile memory) with time stamp
- ◆ SCADA Communication (Local & Remote)

2.0 Application

The CSENEX-U relay has been designed for controlling, protecting and monitoring industrial, utility distribution networks and substations. They can also be used as part of a protection scheme for feeders, transformers and generators.

3.0 Protection Features

- ♦ Under/OverVoltage
- ◆ Residual Voltage / Voltage Unbalance

4.0 Supervision Function

◆ Open-Close Breaker Command

5.0 Hardware

- Digital Signal Processor based numeric design
- Measures true RMS with DFT filter
- 4 Voltage Analog Input
- Max. 4 Digital Outputs
- 8 LEDs at Pickup & Trip on fault + 3 LEDs with special function of 3 control keys
- 16x4 Alpha numeric LCD
- ♦ 5 Push button on the front for HMI
- 3 Push button on the front for Control
- RS-485/USB ports for Communication

6.0 Functional Diagram

(Figure-2) CSENEX-U Functional Diagram

7.0 Protection Functions

Voltage Protection

The relay is equipped with an independent over, 2 step over (U>, U>>) and under voltage supervision (U<, U<<) simultaneously with separately adjustable tripping values and delay times. Voltage measuring is 3-phase. In this process there is a continuous comparison of the line conductor voltages in case of a delta connection and of the phase voltages in case of a star connection with the preset limit Values

a) Under / Over voltage

For under / over voltage protections settings.

Block on under voltage (UlossBlk) in case of power failure is user selectable. If it is enable then for <10% of Un (Power Failure) under voltage protections will be blocked. Protection Blocking is indicated by BLOCK Led.

b) Zero Sequence Over voltage (Neutral Displacement)

CSENEX-U relays will operate from the zero sequence over voltage functions according to the VT configuration

VT configuration=EXTERNAL, then the [59N] will operate based on the residual voltage measured on the relay terminals (Refer figure 6 for connection diagram)

VT configuration = INTERNAL, then [59N] will operate based on the zero sequence voltage

U0=1/3| (UL1+UL2+UL3)| calculated internally.

c) Negative Sequence over voltage

This function is based on the negative-sequence component of the voltage, which is calculated internally and displayed on the screen of the front panel: It is designed to detect any voltage unbalance condition.

$$\overrightarrow{U2}=1/3|(\overrightarrow{UL1}+a^2\overrightarrow{UL2}+a\overrightarrow{UL3})|$$

d) Positive Sequence Under voltage

This function is based on the positive phase sequence component of the voltage, which is calculated internally.

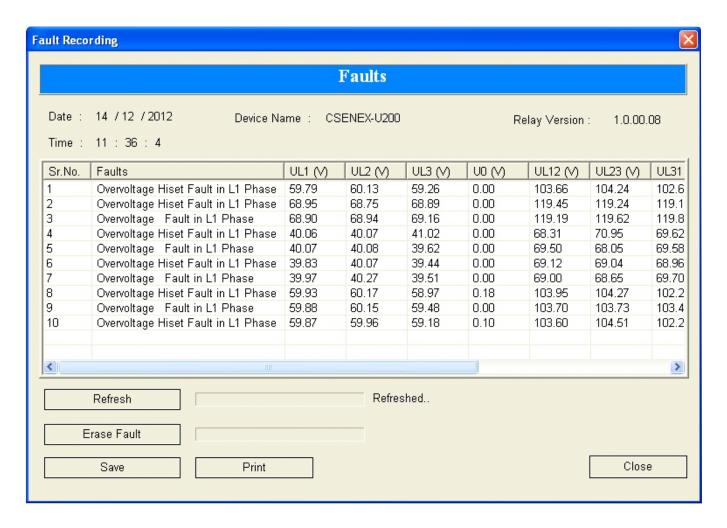
$$\overrightarrow{U1}=1/3|(U_{L1}+aU_{L2}+a^2U_{L3})|$$

e) CB Closing Delay

In order to protect instant closing of breaker after fault, A configurable timer called CB_CLOSE_DELAY is provided. One output contact can be configured for this protection and it can be put in series of closing mechanism to inhibit the CB Closing process till the timer remains active. This time can be configurable.

8.0 Data Acquisition Function

Measurement


- 3 Phase Star Voltage
- Residual Voltage
- ♦ 3 Phase Delta Voltage
- Negative / Positive Sequence Voltage

9.0 Fault Record

CSENEX-U records last 10 faults in its non volatile memory with its time stamp. Each record has the following information:

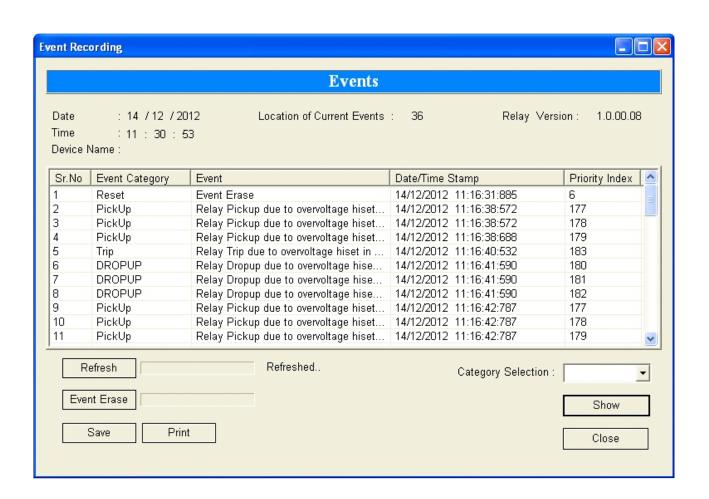
Fault Format			UL23	:	XX.XXV
UL1	:	XX.XXV	UL31	:	XX.XXV
UL2	:	XX.XXV	HRMIN	:	HH:MIN
UL3	:	XX.XXV	SECMs	:	Sec: mSec
U0	:	XX.XXV	DATE	:	DD:MM:YR
UL12	:	XX.XXV	F-TYPE	:	Type of fault

(Figure-3) Fault Data recording on PC software

10.0 Event Record

The unit stores in non volatile memory the last 50 events with it's time stamp. When the available memory space is exhausted, the new event automatically overwrites the oldest event, which can be retrieved from a PC, with the following format:

EVENT : EVENT NUMBER


HOUR : HH.MM

SEC mSEC : SEC: mSEC

DATE : DD/MM/YY

The user can view event records via the front USB interface software

• Description of event number available in event list or in front end software.

(Figure-4) Event Data recording on PC Software

11) Human Machine Interface

It comprises of bright LCD display

- Four push switches for setting values of normal tripping characteristics and other operations for local access.
- ◆ One RESET push switch.
- ♦ One push switch for the functions assigned in the HMI to F1 key, 2 push switch to open or close circuit breaker
- Eight LEDs for pickup or tripping on fault and event in any phase.

(Figure-5)

Keys	Manual Key
•	is used as intelligent key to see the details of last fault and Relay status.
4	is used as a ENTER key.
R	is used to manual reset (after pressing for 2 sec).
♦	is used to scroll in backward direction.
♦	is used to scroll in forward direction.
F1	To perform the assigned task either DO trip or Relay reset.
OPEN	To open the circuit breaker.
CLOSE	To close the circuit breaker.

Output Contacts

No. of digital outputs : 4 (DO1, DO2, DO3, DO4)

2 Change over (DO1, DO2), 2 Normal open (DO3, DO4)

Type of outputs : Relay Programmable (DO Assignment) : Yes

Relay reset type : Programmable (Auto/Manual)

12) Communication (Local and Remote)

The unit has:

1 Front USB port for direct connection to a PC 1 Rear RS-485 communication port

a) Rear Communication

The protocol for the rear port is MODBUS-RTU.

b) Front Communication

The entire setting, Fault & Event are available on 'A' type USB (female) interface with CSE LIVELINK with saving & printing option. This unit also has Front-end Live Link simulation support for testing of relay even without any three phase injection source.

13.0 Setting Ranges

Active Group Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Active Group	ACTIVE	Group1	Group2	1	Group1

(Table-1)

(1) Refer following formula for IDMT characteristics for over/under voltage

Very Inverse $t = \frac{TMS}{(V/V_s) - 1}$

Where t = Operating time in seconds

TMS = Time multiplier setting
V = Applied Input Voltage
Vs = Relay Setting Voltage

Note: This equation is only valid for V/Vs ratio < than 0.95 (under voltage) of ratio > 1.1 (over voltage)

Under Voltage / Over Voltage Setting

Parameters	Display	Setting	g Range	Step	Default
		Min	Max	Size	Setting
Under voltage characteristics	U <char< td=""><td>DEFT</td><td>IDMT</td><td></td><td>DEFT</td></char<>	DEFT	IDMT		DEFT
Blocking on loss of voltage	UlossBlk	Enable	Disable		Disable
Under voltage threshold setting	UV-THRE	5%Un	100%Un	1%Un	10%Un
Under voltage pickup setting	U <pkup< td=""><td>5%Un</td><td>120%Un</td><td>1%Un</td><td>Disable</td></pkup<>	5%Un	120%Un	1%Un	Disable
Under voltage TMS setting	U <ti< td=""><td>0.05</td><td>2</td><td>0.01</td><td>0.05</td></ti<>	0.05	2	0.01	0.05
Under voltage definite time	U <td< td=""><td>0.03 sec</td><td>20.00 sec</td><td>0.01 sec</td><td>0.03 sec</td></td<>	0.03 sec	20.00 sec	0.01 sec	0.03 sec
Under voltage hi-set pickup setting	U< <pkup< td=""><td>5%Un</td><td>120%Un</td><td>1Un</td><td>Disable</td></pkup<>	5%Un	120%Un	1Un	Disable
Under voltage definite time	U< <td< td=""><td>0.03 sec</td><td>20.00 sec</td><td>0.01 sec</td><td>0.05 sec</td></td<>	0.03 sec	20.00 sec	0.01 sec	0.05 sec
Over voltage characteristics	U>char	DEFT	IDMT		DEFT
Over voltage pickup setting	U>Pkup	20%Un	170%Un	1%Un	Disable
Over voltage TMS setting	U>Ti	0.05	2	0.01	0.05
Over voltage definite time	U>Td	0.03 sec	20.00 sec	0.01 sec	0.05 sec
Over voltage hi-set pickup setting	U>>Pkup	20%Un	170%Un	1%Un	Disable
Over voltage definite time	U>>Td	0.03 sec	20.00 sec	0.01 sec	0.05 sec

(Table-2)

U0 / U1 / U2 Setting

Parameters	Display	Setting	g Range	Step Size	Default
		Min	Max		Setting
Neutral voltage pickup setting (1st stage)	U0>Pkup	2%Un	50%Un	0.5%Un	Disable
Neutral voltage characteristic	U0>Char	DEFT	IDMT	-	DEFT
Neutral voltage TMS setting	U0>Ti	0.05	2	0.01	0.05
Neutral voltage definite time (1st stage)	U0>Td	0.03 sec	20.00 sec	0.01 sec	0.05 sec
Neutral voltage pickup setting (2nd stage)	U0>>Pkup	2%Un	50%Un	0.5%Un	Disable
Neutral voltage definite time (2nd stage)	U0>>Td	0.03 sec	200.00 sec	0.01 sec	0.05 sec
Positive sequence voltage pickup setting	U1 <pkup< td=""><td>10%Un</td><td>100%Un</td><td>1%Un</td><td>Disable</td></pkup<>	10%Un	100%Un	1%Un	Disable
Positive sequence voltage definite time	U1 <td< td=""><td>0.03 sec</td><td>10.00 sec</td><td>0.01 sec</td><td>0.10 sec</td></td<>	0.03 sec	10.00 sec	0.01 sec	0.10 sec
Negative sequence voltage pickup setting	U2>Pkup	10%Un	100%Un	1%Un	Disable
Negative sequence voltage definite time	U2>Td	0.03 sec	10.00 sec	0.01 sec	0.10 sec

(Table-3)

DO Assignment

Parameters	Display
Under voltage protection	U<
Under voltage hi set protection	U<<
Over voltage protection	U>
Over voltage hi set protection	U>>
Zero sequence over voltage protection (1st Stage)	U0>
Zero sequence over voltage protection (2nd Stage)	U0>>
Positive sequence under voltage protection	U1<
Negative sequence over voltage protection	U2>
Self supervision	SELF SUP
Circuit breaker open	CB open
Circuit breaker close	CB close

(Table-4)

Function Reset

Parameters	Display
Under voltage protection	U<
Under voltage hiset protection	U<<
Over voltage protection	U>
Over voltage hi set protection	U>>
Zero sequence over voltage protection (1st Stage)	U0>
Zero sequence over voltage protection (2nd Stage)	U0>>
Positive sequence under voltage protection	U1<
Negative sequence over voltage protection	U2>

(Table-5)

Erase Counter Record

Parameters	Display	Setting Range		Step Size	Default
		Min	Max	-	Setting
Erase Events	EventsErase	NO	YES	1	NO
Erase Faults	FaultsErase	NO	YES	1	NO

(Table-6)

Common Setting

These are the settings common for all the protections:

Parameters Display		Setting	Setting Range		Default
		Min	Max	•	Setting
Nominal frequency	FREQ(Fn)	50 Hz	60 Hz	-	50 Hz
Phase selection	PHASE	1	3	-	1
PT ratio	PTRatio	1	9999	1	1
Wire configuration	Wire confg	STAR	DELTA	-	star
Neutral displacement	NeutDisp	EXTRNL	INTRNL	-	EXTRNL
Fault Message Setting	[F]Stats	Disable	Enable	-	Disable

(Table-7)

Rear Communication (RS-485)

Description		Default Setting
Baud rate selection (programmable)	9600 / 19200 / 38400 bps	19200 bps
Parity selection (programmable)	Even / Odd / None	None
Stop bit	1 Bit	1 Bit
Data bit	8 Bit data	8 Bit data
Remote address (programmable)	247	1
Cable required for Interface	Two wire twisted shielded cable	

(Table-8)

Front USB Communication

Protocol	CSE Proprietary Protocol: available with front software
Baud rate	19200 bps
Cable required for Interface	USB cable type (A to A)

(Table-9)

14.0 Technical Data

Measuring Input

Rated data	
Rated voltage Vn	110V (In Star configuration it will be 63.5V)
	230V (Only with Star configuration)
	400V (In Star configuration it will be 230V)
Rated frequency Fn	50Hz / 60Hz

(Table-10)

Trip Time Accuracy

Parameters	Accuracy
Trip time accuracy for protections	±5% OR ±30mSec OR inaccuracy in Trip Timing in reference to ±2% error in measured voltage

(Table-11)

Measurement Accuracy

Parameters	Range	Frequency Range	Accuracy
Voltage	5-170%Un	50-60Hz	Less than <u>+</u> 2%

(Table-12)

Trip Contact Rating

Contact rating	
Contact relay	Dry contact Ag Ni
Make current	Max. 30A & carry for 3S
Carry capacity	8A continuous
Rated voltage	250V AC / 30V DC
DC Current Carrying Capacity	8A@30VDC / 0.3A@110VDC/ 0.2A@220VDC
Breaking characteristics	
Breaking capacity AC	1500VA resistive
	1500VA inductive (PF=0.5)
	220V AC, 5A(cos phi=0.6)
Breaking capacity DC	135V DC, 0.3A (L/R=30ms)
	250V DC, 50W resistive or
	25W inductive (L/R=40ms)
Operation time	<10ms
Durability	
Loaded contact	10,000 operation minimum
Unloaded contact	30,000 operation minimum

(Table-13)

Auxiliary Supply

Rated auxiliary voltage UH	For L Model	18V-60V DC
	For H Model	85V-280V AC / 110V-300V DC
Rated supply for digital input	Normal Voltage UN	80V-260V AC (Active)
	For H Model	48V-300V DC (Active)
		<30V DC (Inactive)
		<50V AC (Inactive)
	Normal Voltage UN	24V - 60V DC (Active)
	For L Model	<18V DC (Inactive)
Power consumption	Quiescent approx. 3W	Operating approx. <7W

(Table-14)

Common Data

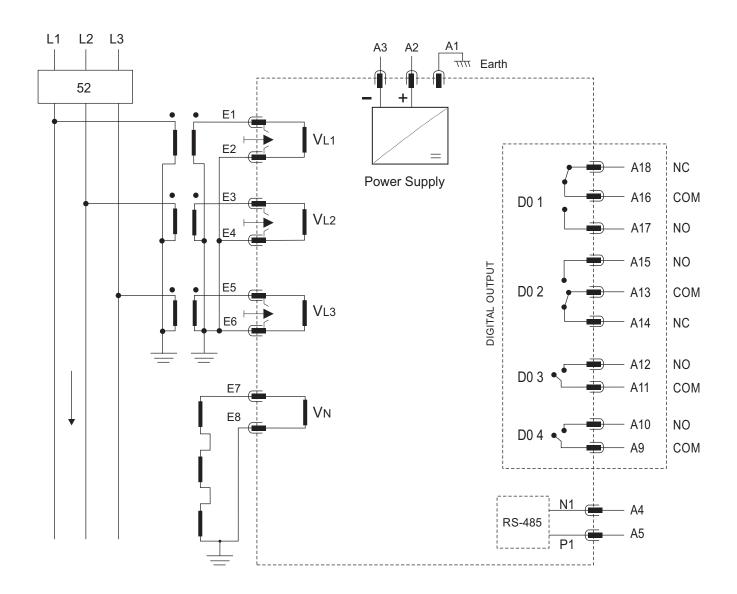
Dropout ratio	> 96%
Relay reset time	30 ms
Minimum operating time	30 ms
Transient overreach at instantaneous operation	<u>+</u> 5 %

(Table-15)

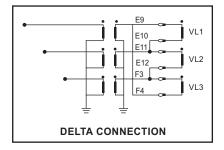
Date & Time setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max	•	Setting
Hour	HOUR	0	23	1	
Minute	MIN	0	59	1	
Second	SEC	0	59	1	
Date	DATE	1	31	1	
Day	DAY	SUN	SAT	1	
Month	MONTH	1	12	1	
Year	YEAR	0	99	1	

(Table-16)

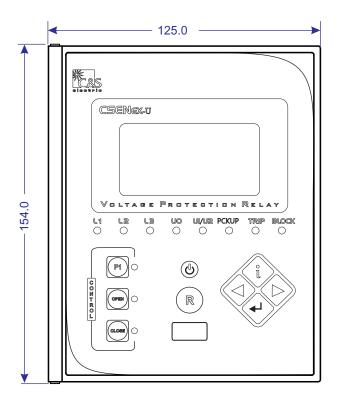

15) Type Test

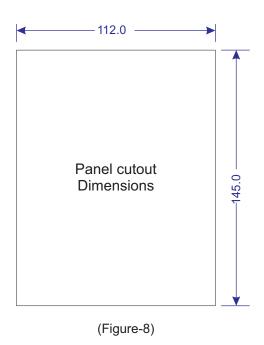
DESIGN STANDARD	
Specified ambient service temp. range	VDE 04355 part 303, IEC 255-4, BS 142
For storage	40°C to + 85°C
For operation	-20°C to 70°C
Environmental protection class F as per DIN	
40040 and per DIN IEC 68, part 2.3	relative humidity 95% at 40°C for 56 days.
Isolation test voltage, inputs and outputs between	
themselves and to the relay frame as per VDE 0435,	
part 303	2.5 KV (eff.) / 50 Hz, 1 min.
Impulse test voltage, inputs and outputs between	
themselves and to the relay frame as per VDE IEC 0435,	
part 303	5 KV, 1.2/50, 0.5J
High frequency interference test voltage, inputs and	
outputs between themselves and to the relay frame	
as per DIN IEC 255, part 22-1	2.5 KV/1MHz
Electrical fast transient (burst) test as per	
DIN VDE 0843 part 4	4KV / 2.5 kHz, 15ms
Radio interference suppression test as per	
DIN VDE 57 871	Limit value class B
Electrostatic discharge (ESD) test as per	
DIN VDE 0843 part 2	8 KV
Radiated electromagnetic field test as per VDE 0843 part2	10 V/m


(Table-17)

16.0 Connection Diagram

(Figure-6)



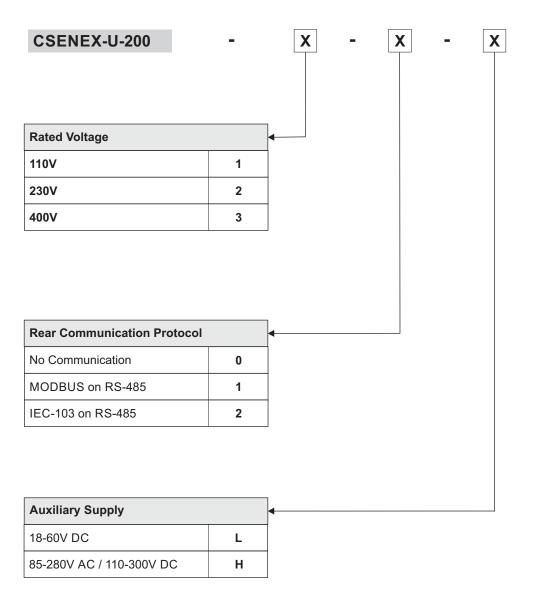


17.0 Dimension Details

(All the dim. are in mm, Gen. Tol.: + 1.0mm)

Front View

(Figure-7)


Side View

(Figure-9)

18.0 Ordering Information

Issue Date: 04.10.12, Rev. No: 08, Rev. Date: 17.09.19

CSENEX-U-200

S.No.	Rev.No.	Details	Date
01	07	Change in ordering information, include 3rd option IEC	28.03.15
02	08	Change in conn diagram DO connection as like CSENEX-I 201 Dos connection.	17.09.19
03	09	Inclusion of Inverse graph representation on page 14 & 15	04.07.23
T			

NOTE

The content in this document are not binding and is for general information.

C&S reserves the right to change the design, content or specification contained in this catalog without prior notice.

For further information, please contact:

C&S Electric Ltd. (Protection & Measurement Devices)

C-60, Wing-A, Phase-II, Noida-201 305, Dist: Gautam Budh Nagar (U.P) INDIA Phone: +91-120-38748 00 / 01

Branch	Phone	Fax	E-mail
Ahmedabad	+91-79-615651 22/23/24	+91-79-61565130	cspc.ahemdabad@cselectric.co.in
Bangalore	+91-80-305703 72/73, 30570347	+91-2558-4839	bangalore@cselectric.co.in
Bhubaneswar	+91-674-2507265	+91-674 2507265	bhubaneswar@cselectric.co.in
Chennai	+91-44-33534501,33534521-23		chennaiteam@cselectric.co.in
Cochin	+91-484-3071717	+91-484-3071716	
Delhi	+91-11-338490 00/10/11	+91-11-30838826	sales.pmd@cselectric.co.in
Hyderabad	+91-40-485340 80/82		hyderabad@cselectric.co.in
Kolkata	+91-33-392121 19-21		
Mumbai	+91-22-241147 27/28		mumbaiteam@cselectric.co.in
Pune:	+91-20-242505 18/19	+91-20-30283244	pune@cselectric.co.in