We touch your electricity everyday!

CSENEX-I 100/101

Intelligent Measuring and Protection Device

Catalog

PMD Division

CONTENTS

S.no.	Description
1.	Introduction
2.	Features
3.	Application
4.	Hardware
5.	Protection Features
6.	Functional Diagram
7.	Fault Recording
8.	Event Recording
9.	Human Machine Interface
10.	Communication
	a) Rear Communication
	b) Front Communication
11.	Setting Ranges
12.	Technical Data
13.	Type Test
14.	Technical Test
15.	Model Description Table
16.	TCS Diagram
17.	Connection Diagram
18.	Back Terminal Diagram
19.	Dimensional Details
20.	Relay Mounting
21.	Ordering Information

1) Introduction

CSENEX Series offers a compact Multi-functional Over-current protection solution for Feeder, Generator, Motor & Transformer segment.

CSENEX-I Family of protective relays are numeric relays that provides multi protection and monitoring with reliable and fast protection solution in a single unit.

In this family of CSENEX series, the CSENEX-I is an feeder protection solution which has fast, sensitive and secure protection for feeder internal & external faults.

CSENEX-I offers different model based features to cover the wide range of user.

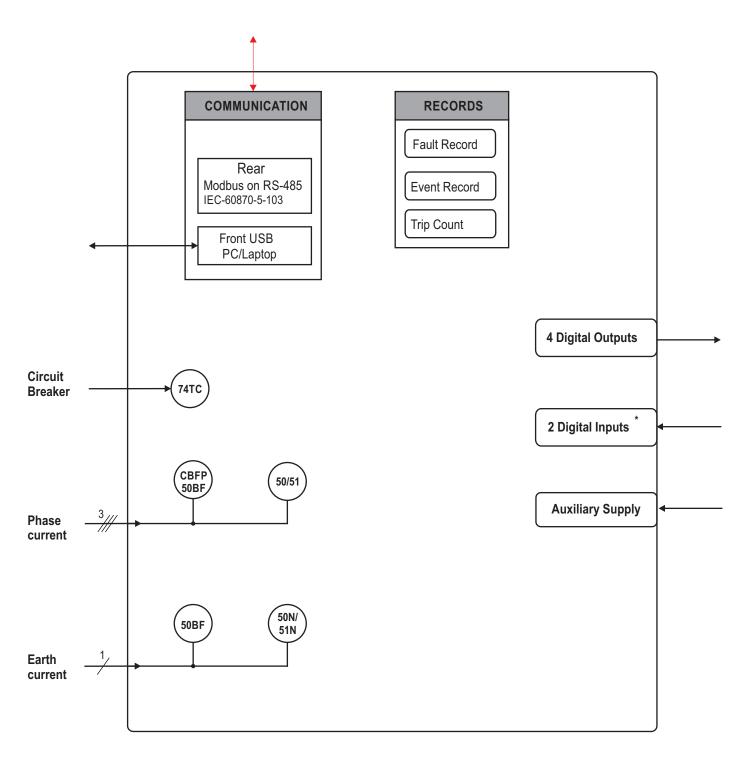
2) Features

- 1A & 5A rated CT input (site selectable)
- Draw out with self CT shorting (Model Dependent)
- Event recorder
- Fault recorder
- Trip Counter
- DI/DO programmable matrix (DI available only in CSENEX-I 101 model)
- Communication (Local & Remote)

3) Application

The CSENEX-I relays have been designed for controlling, protecting and monitoring industrial, utility distribution networks and substations. They can also be used as part of a protection scheme for feeders, transformers and generators.

4) Hardware


- Micro controller based numeric design
- Measures true RMS with DFT filter
- 4 Current analog inputs
- Max. 2 digital inputs (available in 101 model)
- Max. 4 digital outputs
- Alpha numeric (12 x 2) LCD
- 5 Push button on the front for HMI
- RS-485 & USB communication

5) Protection Features

- Three phase time over current protection
- Three phase instantaneous protection
- Earth time over-current
- Earth instantaneous over-current
- Circuit breaker failure protection
- Trip Circuit Supervision
- Cold Load Pickup
- Harmonic Blocking

6) Functional Diagram

(Figure 1)

Protection Function

Three Phase Over-current Protection

The independent two stages are available for phase fault protection. For I> the user may independently select definite time delay or inverse time delay with different type of curves. The second Hi-Set stage can be configured with definite time only.

Earth Fault Protection

The independent two stages are available for earth fault protection. For first stage (le>) the user can select definite time delay or inverse time delay with different type of curves. The second Hi-Set stage can be configured with definite time only.

Trip Circuit Supervision

This feature continuously supervises trip circuit of both pre closing and post closing conditions in circuit breaker. It detects tripping mechanism failure like circuit breakage contact degeneration in wires, contacts and coils.

Circuit Breaker Failure Protection

The CB Failure Protection is based on supervision of phase and earth currents after tripping events. The test criterion is whether all phase currents have dropped to less than 5% of In within tCBFP. If one or more of the phase currents have not dropped to specified current within this time, CB failure is detected and the assigned output relay is activated.

Harmonic based Protection Blocking

To avoid any nuisance tripping, CSENEX-I provides harmonic detection & protection blocking feature. Relay will hold the tripping for a set time, If harmonic is present with protection pickup. Blocking time & harmonic selection is configurable in the relay.

Note: Harmonics is detected based on presence for at least 2 cycles.

Protection blocking due to harmonics is active, when percentage of harmonics present is more than 25% of fundamental current.

Cold Load Pickup

This function aims to avoid non-desired trips in the following situation: after being the line de-energized for a period of time and reenergized later, the load exceed the protection setting without the presence of a fault. This may be due to the fact that the off period of all the loads (furnaces, heaters, coolers etc.) is elapse and they are all connected at the same time, producing a strong inrush current in the line, but which can be supported within certain time. This phenomenon can occur not only at the moment of the breaker manual closing, after having remained open for a certain time, but also with the breaker permanently closed due to the operation of another upstream breaker.

What the function does is detecting when those conditions are given and changing the tripping settings during a programmable time.

The function is activated when the current in the 3 phases is below 0.08A, then the programmed time starts to run to determine that the load is cold (this time can be 0, what means that any circuit breaker opening could lead to the cold load situation). Once that time has expired and the current has not exceed again 0.15A, the protection usual setting values are replaced by the cold load pickup ones. When any of the phase current exceed 0.15A a counter with programmable time starts, during which the setting are the cold load pickup ones. When expiring this time, the settings are again the usual ones.

7) Fault Record

CSENEX-I records last 10 faults in its non volatile memory with it's time stamp. Each record has the following information:Fault Format

 [F] IL1
 :
 00.00A

 [F] IL2
 :
 00.00A

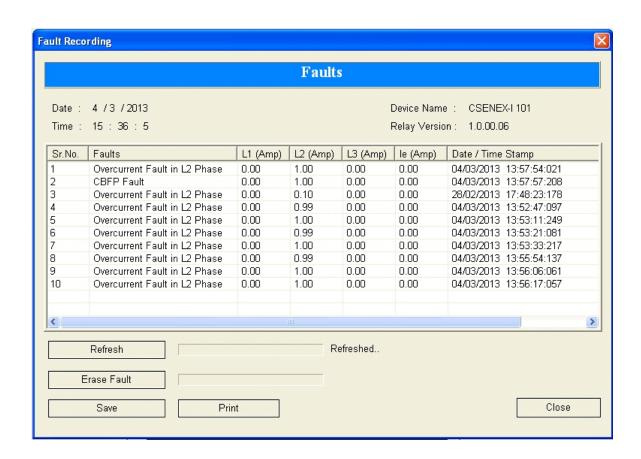
 [F] IL3
 :
 00.00A

 [F] Ie
 :
 00.00A

 HOUR MIN
 :
 HH:MM

 SEC mSEC
 :
 Sec:mSec

 F-TYPE
 :
 FAULT TYPE


Where

[F][ILx] Magnitude of phase current's.[F]le Magnitude earth fault current's

F-Type Origin of fault (over current, negative phase sequence, etc.)

whenever the available memory space is exhausted the new fault automatically over writes the oldest fault. When the relay trips the description of fault in the feeder will appears on the LCD screen automatically and by pressing **i** key one can easily get all the detailed information of that fault.

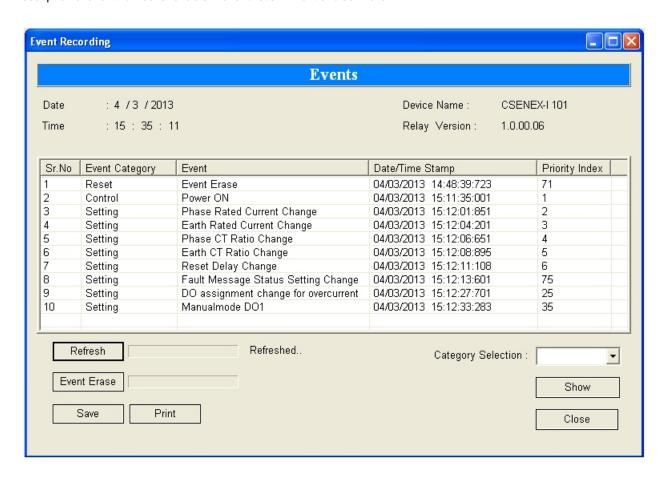
The user can view the fault record either via the front USB interface software or remotely via the RS-485 communication.

(Figure 2) (Fault Data Recording on PC software)

8) Event Record

The unit stores in non volatile memory the last 16 events. When the available memory space is exhausted, the new event automatically overwrites the oldest event which can be retrieved from a PC, with the following format:

EVENT : EVENT NUMBER


HOUR : HH:MM

SEC mSEC : SEC:mSEC

DATE : DD/MM/YY

The user can view event records via the front USB interface software.

* Description of event number available in event list or in front end software

(Figure 3) (Event Data Recording on PC Software)

Output Contacts

No. of Digital Outputs : DO1, DO2, DO3, DO4)

[2 Change Over, 2 Normal Open]

Type of outputs : Relay Programmable (DO Assignment) : Yes

Relay reset type : Programmable (Auto/Manual

Input Contacts

No. of Digital Inputs : 2 (DI1, Di2) (only available in CSENEX-I 101 model)

Programmable (DI Assignment) : Programmable

9) Human Machine Interface

It comprises of bright LCD display

- Four push switches for setting values of normal tripping characteristics and other operations for local access.
- One RESET push switch.
- One push switch for the functions assigned in the HMI.
- Sixteen LEDs for pickup or tripping on fault and event in any phase.

Keys	Manual Key
0	is used as intelligent key to see the details of last fault and Relay status.
•	is used as a ENTER key.
R	is used to manual reset (after pressing for 2 sec)
O	is used to scroll in downward direction.
	is used to scroll in upward direction.

(Figure 4) (HMI)

10) Communication (Local & Remote)

The unit has:

- 1 Front USB port for direct connection to a PC
- 1 Rear RS-485 communication port

a) Rear Communication * (Model dependent)

The protocol for the rear port is MODBUS-RTU, IEC-60870-5-103.

b) Front Communication

The entire setting, Fault & Event are available on 'A' type USB (female) interface with CSE LIVELINK with saving & printing option. This unit also has Front-end Live Link simulation support for testing of relay even without any three phase injection source.

11) Setting Ranges

Over Current & Earth Protection

S.	Parameter	Display	Setting I	Range	Step Size	Default
No			Min.	Max.		Setting
1	Phase over-current characteristics	PCh			DEFT/EINV/VINV /LINV/NINV1.3/ NINV3.0/NINV0.6	DEFT
2	Earth over-current Characteristics	ECh			DEFT/EINV/VINV /LINV/NINV1.3/ NINV3.0/NINV0.6	DEFT
3	Phase over-current low set pickup setting Phase over-current definite timing Phase over-current inverse timing	l> t> ti>	0.05xl _p 0.1 Sec 0.01	4.0xl _p 150 Sec 1.50	0.01xl _p 0.01Sec 0.005	EXIT 0.10 Sec 0.05
4	Phase over-current hi-set pickup setting Phase over-current hi-set definite timing	>> t>>	0.5xl _p 0.03 Sec	30xl _p 20 Sec	0.1xl _p 0.01Sec	EXIT 0.10 Sec
5	Earth over-current low set pickup setting Earth over-current low set definite timing Earth over-current low set inverse timing	le> te> tie>	0.05xIn 0.03 Sec 0.01	2.5xIn 150 Sec 1.50	0.01xln 0.01Sec 0.005	EXIT 0.10 Sec 0.05
6	Earth over-current hi-set pickup setting Earth over-current hi-set definite timing	le>> te>>	0.5xIn 0.03 Sec	8xIn 20 Sec	0.05xln 0.01 Sec	EXIT 0.10 Sec

13.5

Very Inverse
$$t = \frac{1}{(I/Is)-1}$$
 $ti[s]$

Extremely Inverse $t = \frac{80}{(I/Is)^2-1}$ $ti[s]$

Long time Inverse $t = \frac{120}{(I/Is)-1}$ $ti[s]$
 $0.14/0.061/0.028$

t =

Where t = Tripping time ti=Time multiplier

For Current Range 0.2 to 20xIn:

Normal Inverse 3.0/1.3/0.6

Trip timing Accuracy: VINV / NINV 3.0 / 1.3 / DEFT: +5% OR +40mSec (whichever is higher)

 $(I/Is)^{0.02}-1$

EINV / NINV 0.6 / LINV: +7.5% OR +40mSec (whichever is higher)

ti [s]

For Current Range 0.05 to 0.2xIn:

Trip timing Accuracy: VINV / NINV 3.0 / 1.3 / DEFT: +20% OR +40mSec (whichever is higher)

EINV / NINV 0.6 / LINV : +20% OR +40mSec (whichever is higher)

Trip Circuit Supervision Protection

S.No.	Parameter	Display	Setting Ranges		Step	Default
			Min	Max	Size	
1	TCS	t_TCS	0.03	2	0.01	EXIT

Circuit Breaker Failure Protection

S.No.	Parameter	Display	Setting Ranges		Step	Default
			Min	Max	Size	
1	CBFP	t_CBFP	0.03	2	0.01	EXIT

DO Reset

S.No.	Display	Setting Ranges	Default
1	DO-1	Auto / Manual	Auto
2	DO-2	Auto / Manual	Auto
3	DO-3	Auto / Manual	Auto
4	DO-4	Auto / Manual	Auto

DI Assignment (Only available in CSENEX-I 101 model)

S.No.	Parameter	Display	Min	Max	Step Size	Default
1	Circuit Breaker Close	CB close	DI1	Exit		
2	Circuit Breaker Open	CB open	DI1	Exit		

Erase Record

S.No.	Parameter	Display	Min	Max	Step Size	Default
1	Event Erase	Events	NO	YES		NO
2	Fault Erase	Faults	NO	YES		NO
3	Trip Counter Erase	TRP_CNT	NO	YES		NO

Harmonic Blocking

S.No.	Parameter	Display	Min	Max	Step	Default
1	Phase harmonic	Ph_Har	NO	YES		NO
2	Earth Harmonic	ET_Har	NO	YES		NO
3	Phase blocking time	t_Ph	0.10	20.00		0.10
4	Earth blocking time	t_Et	0.10	20.00		0.10

DO Assignment

S.No	Parameter	Display	Min	Max	Default
1	Phase over-current low set	l>	1	1234	
2	Phase over-current hi-set	l>>	1	1234	
3	Earth over-current low set	E>	1	1234	
4	Earth over-current hi-set	E>>	1	1234	
5	Self supervision	Slfsup	1	1234	
6	Trip Circuit protection	TCS	1	1234	
7	Circuit breaker failure protection	CBFP	1	1234	

Cold Load Pickup Setting

S.No	Parameter	Display	Min	Max
1	Cold Load Pickup enable	CLP PKP	NO	YES
2	Cold Load Short Circuit Setting	>>	0.50 xlp	30.0 xlp
3	Cold Load Short Circuit Time	t>>	0.03 s	20.00 s
4	Cold Load Earth Hi-set Setting	le>>	0.50 xln	8.0 xln
5	Cold Load Earth Hi-set Time	te>>	0.03 s	20.00 s
6	Cold Load Time	tcl	0.00 s	100.00 s
7	Cold Load Pickup Time	tac	0.00 s	100.00 s

Common Setting (These are the settings common for all protections)

S.No.	Parameter	Display	Setting Range Min. Max.		Step Size	Default Setting
1	Rated phase current *	lp	1 A	5 A		1 A
2	Rated earth current *	In	1 A	5 A		1 A
3	Phase CT ratio	P-CTR	1	9999	1	1
4	Earth CT ratio	E-CTR	1	9999	1	1
5	Reset Delay	Rstdl	0 Sec	20 Sec	0.1sec	0
6	Fault Message Status	F-Stats	NO	YES		NO

Rear Communication

(*Availability as per model selection)

Protocol	MODBUS RTU, IEC-60870-5-103
Baud rate selection (programmable)	9600/19200/38400 bps
Parity selection (programmable)	Even / Odd / None
Stop bit	1 Bit
Data bit	8 Bit data
Remote Address (programmable)	(1 to 247)
Cable required for interface	Two wire twisted shielded cable

Front USB Communication

Protocol	CSE proprietary protocol: available with front software	
Baud rate	19200 bps	
Cable required for interface	USB cable type (A to A)	

Auxiliary Supply

Auxiliary Voltage Range	For L Model	18V-60V DC
	For W1 Model	18V-150V DC
	For H Model	85V-280V AC / 110V-300V DC
Supply Range for Digital Input	For L & H Model	24V above AC/DC
Power Consumption	Quiescent approx. 3W	Operating approx. <7W

Measurement Accuracy

Quantity	Range	Frequency Range	Accuracy
Current	1.0 - 30 xlp	50 Hz	+2%

12) Technical Data

Measuring Input

Rated Data	Rated current Ip:1A or 5A
	Rated frequency Fn : 50 Hz/60Hz
Drop out to Pickup Ratio	>96%
Power consumption in current circuit	At Ip=1A 0.2 VA
	At Ip=5A 0.4 VA
Thermal withstand capability	Dynamic current withstand
in current circuit	(half wave): 250 x lp
	for 1 Sec : 100 x I _P
	for 10 Sec : 30 x I _p
	continuously : 4 x Ip

13) Standards

Type Test			
F1	Functional Tests	Internal Design	Performance in line with Specification & Standards
			Pickup / Drop down / Power consumption in Current /
		Specifications &	Voltage / Aux. Supply / Trip timing accuracy: OC /
		IEC60255-151:2009	NPS / Thermal / Zero Sequence

Clim	atic Test		
C1	Temperature Dry Cold	IEC 60068-2-1	-20 deg C, 96 hours
	(Relay operational)		
C2	Temperature Dry Cold	IEC 60068-2-1	-25 deg C, 96 hours
	Transportation & Storage		
C3	Temperature Dry Heat	IEC 60068-2-2	55 deg C, 96 hours
	(Relay operational)		
C4	Temperature Dry Heat	IEC 60068-2-2	70 deg C, 96 hours
	Transportation & Storage		
C5	Damp Heat Test	IEC 60068-2-30	95% @ +55 / +25 deg C, 6 cycle (12hr + 12hr each)
	(Relay operational)		

Encl	osure		
C6	Enclosure	IEC 529	Front IP54 (Dust 5x + Water x4)

Mechanical Test

Rela	Relay Operational			
M1	Vibration response / Endurance test	IEC 60068-2-6	Class I Vibration response (Relay operational)	
			10Hz~150 Hz - peak displacement 0.035 mm below	
			58/60 Hz, 0.5 g above, 1 sweep cycle in each axis	
			Vibration endurance (Relay de-energised)	
			10 Hz~150 Hz 1g, 20 sweep cycles in each axis	
M2	Shock Response /	IEC 60255-2-27	Class I	
	Withstand Test		Shock response (Relay operational) 5g 11mS	
			3 pulse in each axis	
			Shock withstand (Relay de-energised) 15g 11mS	
			3 pulses in each axis	
M3	Bump Test	IEC 60255-21-1	Bump (Relay de-energised) 10g 16mS	
			1000 pulses in each axis	
M4	Seismic Test	IEC 60255-21-3	Class I	
			Method A single axis sine sweep	
			1 Hz~35 Hz-below 8/9 Hz 3.5 mm peak	
			displacement horizontal axis, 1.5 mm vertical axis	
			above 8/9 Hz 1g horizontal, 0.5 g vertical	
			1 sweep cycle in each axis	

Ele	ctrical Test		
E1	Insulation Resistance >100MΩ	IEC 60255-27:2013	500V DC, 5 sec between all terminals & case earth, between terminals of independent circuits including contact circuits and across open contacts
E2	DC & AC Supply Voltage (Relay operational)	IEC 60255-26	Voltage range, upper & lower limit continuous withstand, ramp up & down over 1 minute
E3	Voltage Dips, Short Interruptions & Voltage variations immunity (Relay operational)	IEC 60255-26	3 Dips & 3 Interruptions at 10 sec intervals of duration between 10mS and 500mS at zero crossings & at other points on wave Variation: 100% to 40% over 2s, hold for 1s, return to 100% over 2s
E4	Ripple in DC supply (Relay operational)	IEC 60255-26	12% AC ripple
E5	Dielectric Test (Relay de-energised) No breakdown or flash over Test voltage 45~65 Hz sinusoidal or with DC voltage at 1.4x the stated AC values	IEC 60255-27:2013	2.0 KV @ 1min All circuit to Earth / Between IP & OP
E6	High Voltage Impulse (Relay de-energised)	IEC 60255-27:2013	5 kV peak 1.2/50uS, 0.5 J-3 positive, 3 negative between all terminals to case earth between independent circuits
E7	VT Input Thermal Withstand		1.5xVn, continuous
E8	CT Input Thermal Withstand		250xln half wave 100xln for 1 second 30xln for 10 second 4xln continuously
E9	Contact performance & endurance tests	IEC 60255-1:2009	

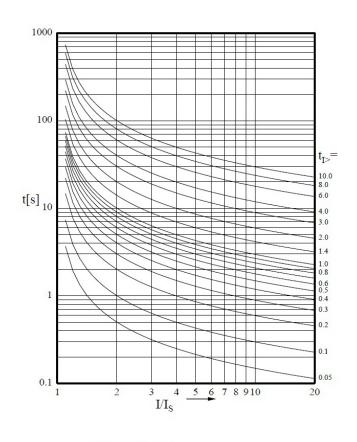
Elec	Electro-magnetic Compatibility				
R1	Electrical fast Transient/Burst (Relay operational)	IEC 60255-26 : 2013 IEC 61000-4-4	Class IV- ±4.0 kV All Circuits. Pulse 5 / 50nsec / Duration 15msec / Period:300msec/Pulse Freq: 5KHz / 2KV at I/O		
R2	HF Disturbance Test (Oscillatory Waves) 1 MHZ Burst (Relay operational)	IEC 60255-22-1 : 2007	Class III Longitudinal 2.5 kV peak, 2sec between independent circuits & case earth		
R3	Electrostatic Discharge (Relay operational)	IEC 60255-26 : 2013 IEC 61000-4-2	Class III 8kV air discharge, 6KV contact No of Discharge : 10 both polarities at 1 sec intervals		
R4	Conducted Disturbance RF fields (Relay operational)	CISPR-11 : 2015 IEC 60255-26 : 2013	0.15 to 80 MHZ (Level-3) Severity Level 10V RMS + sweeps 0.05-0.15 MHZ & 80-100 MHZ		
R5	Radiated RF E-M field immunity test (Relay operational)	CISPR-22 : 2008 IEC 60255-26 : 2013	Class III Test method A + sweep 80-1000 MHZ or IEC 1000-4-3 80-1000 MHZ severity 10 V/m 80% modulated 1 kHz		
R6	Surge Immunity capacitively coupled (Relay operational)	Latest: IEC 60255-26:2013	Short circuit combination wave generator 1.2 uS/50 uS open circuit repetition rate 1 per minute Power supply, CT & VT circuits – 4kV common mode 2 Ohm source 2kV differential mode 12 Ohm source		
R7	Power Frequency Magnetic Field (Relay operational)	IEC 61000-4-8 : 2009	100 A/m for 1 minute in each of 3 axes		
R8	Conducted & Radiated RF Interference Emission (Relay operational)	IEC 60255-26	CISPR-11 / Class A		
R9	Power Frequency, conducted common mode	IEC 1000-4-16 IEC 60255-22-7	DC to 150 kHz Test Level 4 300V at 16 2/3 Hz and 50 Hz		

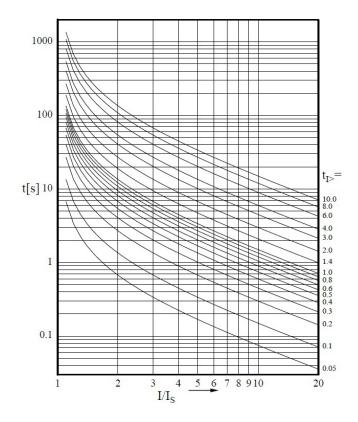
Trip Contact Rating

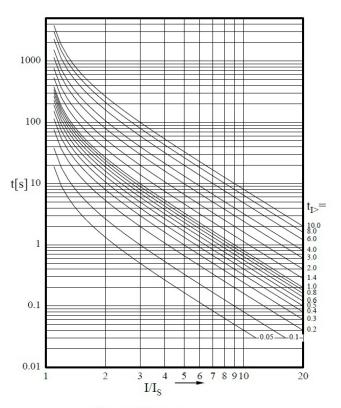
Contact rating	
Contact relay	Dry contact Ag Ni
Make current	Max. 30A & carry for 1S
Carry capacity	6A continuous for All contacts
Rated voltage	300V AC/ 30V DC
DC Current Carrying Capacity	8A@30VDC / 0.3A@110VDC/ 0.2A@220VDC
Breaking characteristics	
Breaking capacity AC	1500VA resistive
	1500VA inductive (PF=0.5)
	220V AC, 6A (cos Ø <=0.6)
Breaking capacity DC	135V DC, 0.3A (L/R=30ms)
	250V DC, 50W resistive or
	25W inductive (L/R=40ms)
Operation time	<10ms
Durability	
Loaded contact	10,000 operation minimum
Unloaded contact	30,000 operation minimum

 $Over-voltage\ category: II,\ Insulation\ voltage: 300V,\ Pollution\ Degree: 2,\ IP\ 54\ from\ Front$

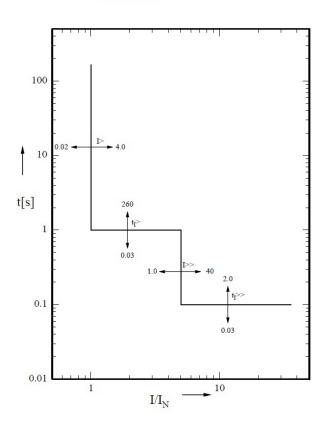
15) Model Selection Table


Function	ANSI	NEX-I-100	NEX-I-101
CT inputs	-	4	4
Over current	50/51	✓	✓
Earth fault	50N/51N	✓	✓
CBFP	50BF	✓	✓
Trip circuit	74TC	Х	✓
Cold Load Pickup	62 CLD	✓	✓
Harmonic blocking	50H	Х	✓
Digital input	-	Х	2
Digital output	-	4	4
Fault record	-	10	10
Event record	-	16	16
Selection of 1/5A	-	0	0
Front communication	-	✓	✓
Rear comm. (RS-485)	-	0	0


O: Optional based on Ordering Information


Inverse Graph Representation

Inverse Time Characteristics

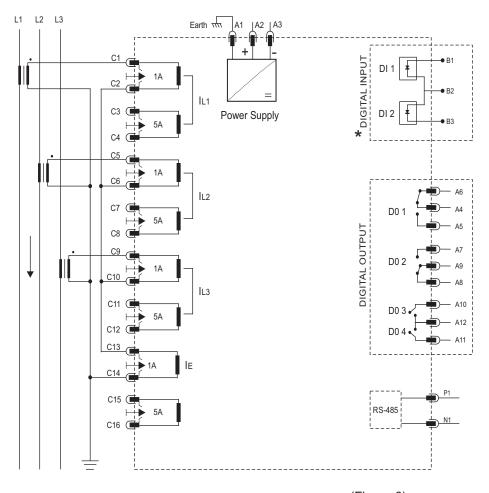


Normal Inverse

Extremely Inverse

Very Inverse

Definite time overcurrent relay



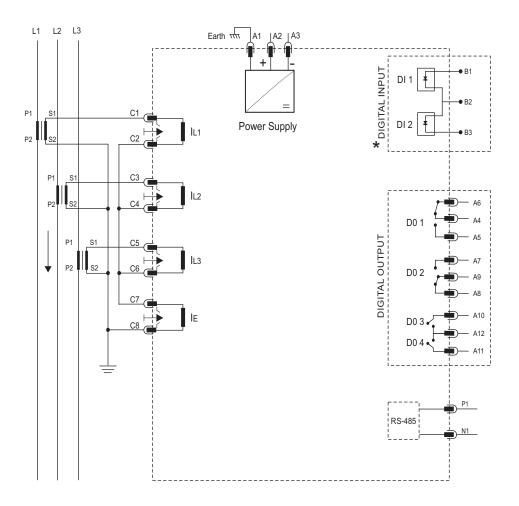
Long time inverse

17) Connection Diagram

(1A & 5A common model)

(Figure 6)

Terminal Description

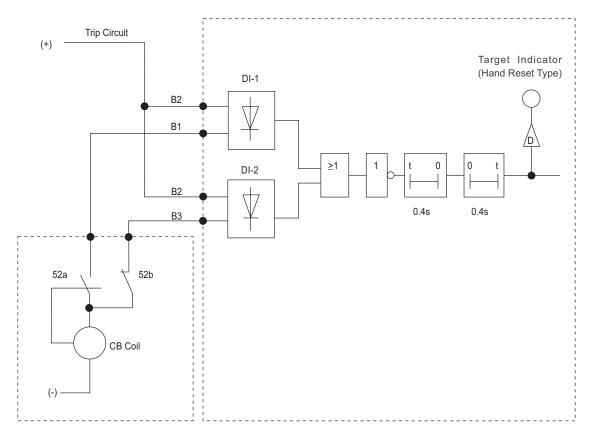

Terminal Name		Terminal Description
A1	:	Auxiliary Supply Earth
A2-A3	:	Auxiliary Supply (A2: + & A3: -)
P1-N1	:	For RS-485: P1(Data+ / A), N1(Data- / B)
A12-A11	:	Potential free Digital Output 4
A12-A10	:	Potential free Digital Output 3
A7-A9-A8	:	Potential free Digital Output 2 (change over)
A6-A4-A5	:	Potential free Digital Output 1 (change over)
B1-B2	:	Potential Digital Input 1
B3-B2	:	Potential Digital Input 2
C1-C2	:	CT Terminal for Phase current input (1A) L1
C3-C4	:	CT Terminal for Phase current input (5A) L1
C5-C6	:	CT Terminal for Phase current input (1A) L2
C7-C8	:	CT Terminal for Phase current input (5A) L2
C9-C10	:	CT Terminal for Phase current input (1A) L3
C11-C12	:	CT Terminal for Phase current input (5A) L3
C13-C14	:	CT Terminal for Earth current input (1A)
C15-C16	:	CT Terminal for Earth current input (5A)

^{*} Model dependent

Connection Diagram

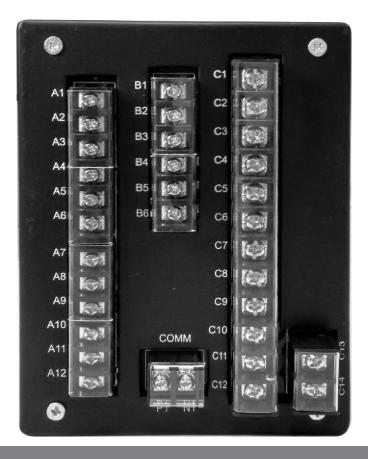
(1A or 5A ordering based model)

(Figure 7)


Terminal Description

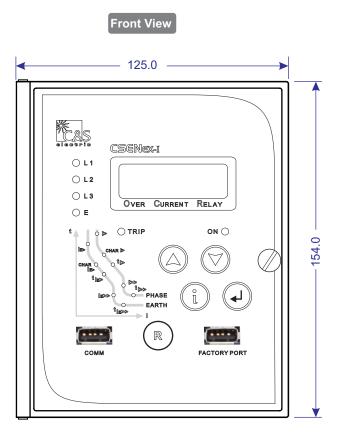
Terminal Name	Terminal Description
A1	: Auxiliary Supply Earth
A2-A3	: Auxiliary Supply (A2: + & A3: -)
P1-N1	: For RS-485: P1(Data+ / A), N1(Data- / B)
A12-A11	: Potential free Digital Output 4
A12-A10	: Potential free Digital Output 3
A7-A9-A8	: Potential free Digital Output 2
A6-A4-A5	: Potential free Digital Output 1
B1-B2	: Potential Digital Input 1
B3-B2	: Potential Digital Input 2
C1-C6	: CT Terminal for Phase current L1(C1-C2), L2(C3-C4), L3(C5-C6)
C7-C8	: CT Terminal for Earth current input

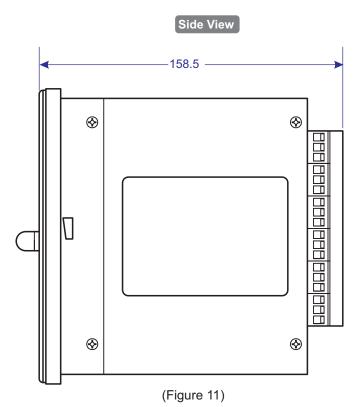
^{*} Model dependent

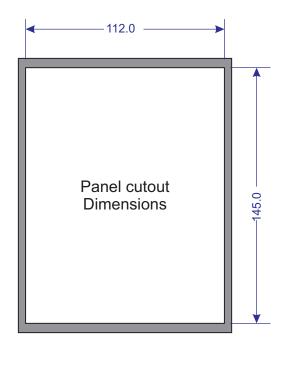


16) Trip Circuit Supervision Diagram

(Figure 5) (Trip Circuit Supervision Function)

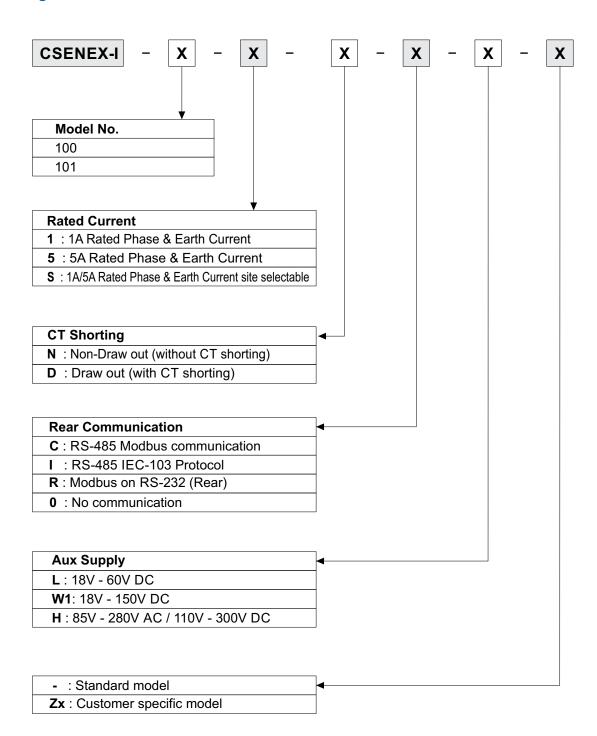

18) Back Terminal Diagram


(Figure 8)



19) Dimensional Details

(Figure 9)



(Figure 10)

21) Ordering Information

EXAMPLE: CSENEX-I-100-1-N-C-L-Zx

CSENEX-1100_101

Revision History

S.No.	Rev.No.	Details	Date
01	14	Inclusion of TCS Diagram	05.08.14
02	15	Inclusion of Cold Load Pickup Description & Table	02.09.14
03	16	Inclusion of RS-232 Communication in Conn. Diagram, Term. Description & Ordering Information	01.10.14
04	17	Change in TCS Diagram	10.09.15
05	18	Inclusion of Relay mounting arrangement on Page 20	11.04.16
06	19	Change in Inverse formula on page 9	25.03.17
07	20	Added Term no. C15 & C16 for Earth current input (5A) in conn. diagram on page 15	06.02.23
08	21	In Inverse formula on page 9 : Change in trip time accuracy for current range : from 30 to 40 msec	26.06.23
09	22	Inclusion of Inverse graph representation on page 15 & 16	04.07.23

NOTE

The content in this document are not binding and is for general information. C&S reserves the right to change the design, content or specification contained in this document without prior notice.

For further information, please contact:

C&S Electric Ltd. (Protection & Measurement Devices)

C-60, Wing-A, Phase-II, Noida-201 305, Dist: Gautam Budh Nagar (U.P) INDIA Phone : +91-120-38748 00 / 01

Branch	Phone	Fax	E-mail
Ahmedabad	+91-79-615651 22/23/24	+91-79-61565130	cspc.ahemdabad@cselectric.co.in
Bangalore	+91-80-305703 72/73, 30570347	+91-2558-4839	bangalore@cselectric.co.in
Bhubaneswar	+91-674-2507265	+91-674 2507265	bhubaneswar@cselectric.co.in
Chennai	+91-44-33534501,33534521-23		chennaiteam@cselectric.co.in
Cochin	+91-484-3071717	+91-484-3071716	
Delhi	+91-11-338490 00/10/11	+91-11-30838826	sales.pmd@cselectric.co.in
Hyderabad	+91-40-485340 80/82		hyderabad@cselectric.co.in
Kolkata	+91-33-392121 19-21		
Mumbai	+91-22-241147 27/28		mumbaiteam@cselectric.co.in
Pune:	+91-20-242505 18/19	+91-20-30283244	pune@cselectric.co.in