We touch your electricity everyday!

CSEPROT-170

Advance Transformer Protection & Monitoring Solution

Catalog

PMD Division

CONTENT5

S.No.	Description
1.	Introduction
2.	Application
3.	Hardware
4.	Protection Features
5.	Supervision Functions
6.	Functional Diagram
7.	Protection Functions
8.	Monitoring Functions
9.	Data Acquisition Function
10.	Technical data
11.	Fault Record
12.	Event Record
13.	Human Machine Interface
14.	Communication
15.	Setting Ranges
16.	Technical Data
17.	Standards
18.	TCS Diagram
19.	Connection Diagram
20.	Dimension Details
21.	Model Selection Guide
22.	Ordering Information

02

1.0 Introduction

CSEPRO series offers a multi functional comprehensive smart protection solution for Feeder, Generator, Motor & Transformer segment.

CSEPRO family of protective relays are advance numerical relays that provide multi protection and monitoring with reliable and fast protection solutions in a single unit.

In this family of CSEPRO series, the CSEPROT-170 is an advanced transformer protection solution which has fast, sensitive and secure protection for transformer internal & external faults.

CSEPROT-170 also provides an automation solution of power control. It complies with IEC60870-5-103, Modbus protocol for high integration of protection & control.

CSEPROT-170 offers following model based features to cover requirements of the wide range of users.

- Programmable Rated Current 1A & 5A for earth, HV & LV winding
- Measurement, Protection & Metering
- Draw-out enclosure have modular design with CT shorting
- Two sets of setting group
- ◆ Fault Record / Event Record / Disturbance Record
- DI/DO Matrix Programmability
- Intelligent key for details of last fault occurred
- Last 10 fault record (nonvolatile memory) with time stamp
- Communication (Local & Remote)
- ◆ CSEPROT-170 relays are equipped with self supervision function

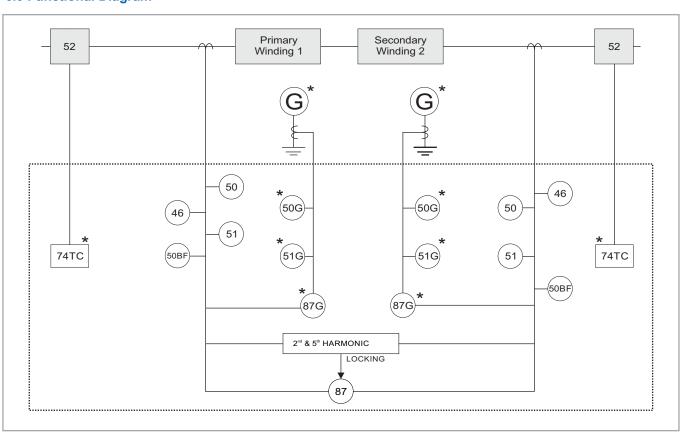
2.0 Application

CSEPRO-T differential relays are used as the main protection and control units for two winding power transformers, for both internal faults and faults in the influence area of current transformers.

CSEPRO-T units require no interposing transformers to adjust CT Ratio and vector group correction as these adjustments are made by the relay itself in software. For these transformer winding configuration (Vector group Yd1, ---- DD10) & CT ratio are selectable though HMI / USB communication. One has to select correct transformer winding configuration and CT ratio used in the protection scheme.

3.0 Hardware

- Digital Signal Processor based numeric design
- ◆ Measures true RMS with DFT filter
- 1A & 5A common current terminal & programmable
- ◆ 7 current analog inputs OR 6 current analog inputs
- Max. 6 Digital inputs / Digital outputs
- ♦ 8 LEDs at Pkup & Trip on fault + 3 LEDs with special function of 3 control keys
- ◆ RS-485 / USB ports for Communication
- 16x4 Alpha numeric LCD
- ♦ 8 Push button on the front for HMI


5.0 Supervision Functions

- ♦ Lock out Relay
- ◆ Open-Close Breaker Command
- ◆ Trip circuit supervision

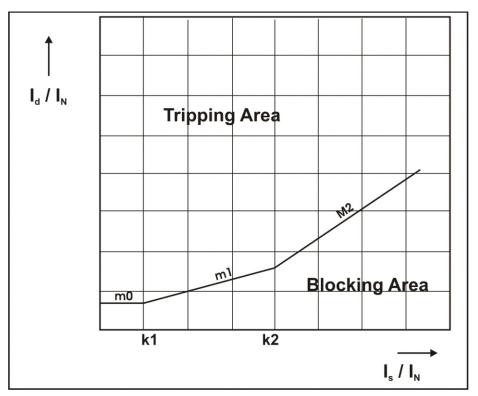
4.0 Protection Features

- ◆ Three phase differential with harmonic restrain
- ◆ Three phase Instantaneous differential
- Restricted earth (87G) on either Primary or Secondary (HMI selection)
- ♦ Three phase time and instantaneous over current (HV & LV side)
- Ground time and instantaneous over current (either HV or LV side)
- ◆ Current unbalance (HV & LV side)
- ◆ Breaker failure (HV & LV side)

6.0 Functional Diagram

(Figure-2)

^{*} Any one side only (Primary or secondary)


7.0 Protection Functions

The CSEPROT is a numerical multi functional relay ideally suited for the protection of any two winding transformer against two phase internal faults, inter-turn faults and ground faults as well as over current protection for both phase faults and earth faults separately for each transformer winding on primary and secondary.

Percent Differential Protection (87)

CSEPROT unit has dual slope characteristic for differential protection with programmable percentage slope settings, adjustable slope breakpoints, and adjustable additional time delay. This unit provides programmable CT ratio correction factor for primary and secondary side of transformer and CT connection configurations through programmable vector groups.

The differential unit operation characteristic is as shown below.

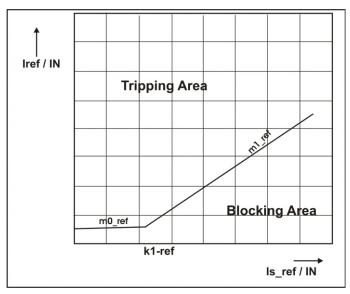
Differential protection operation characteristic (Figure-3)

Harmonic Restrain

Harmonic component of the differential current (2nd & 5th for each phase, whereas 2nd & 3rd for earth) is calculated & extracted using Digital Fourier transforms. The magnitude of these current is used to discriminate between faults and inrush conditions that will restrain differential function during inrush caused by energization.

If blocking on harmonic setting is enabled then the relay blocks all the tripping operations when if 2nd/5th harmonic for phase & 2nd & 3rd for earth are higher than the set values.

Instantaneous Differential Protection


Tripping occurs when the differential current exceeds the set limit for the selected duration. Refer Table-6 for these selections. Instantaneous differential protection does not have harmonic restraint.

Restricted Earth Protection

 $Earth\,protection\,(50G,51G)\,will\,be\,available\,either\,to\,winding\,1\,or\,winding\,2\,which\,is\,selectable.$

This function is applicable when a transformer winding is earthed. REF is based on comparing the vector sum of the phase currents of the transformer winding to neutral point current. If the difference (Iref) is greater than the calculated value then tripping occurs.

Restricted earth protection operation characteristic (Figure-4)

Phase Over-current

This protection gives backup protection for transformer external faults. If the external faults are not cleared by the primary protections, this overcurrent unit will actuate, otherwise the transformer will be seriously damaged due to overloads. Each winding has overload as well as short-circuit protection.

Ground Over-current*

This is an overcurrent function used on the current measured at the grounding of a power transformer in order to detect faults to earth. Each winding features has Earth low and Earth hi-set protections.

Neutral Over current

This is an over current function applied to the vectorial sum of phase currents, being its function to detect faults to earth.

Current Unbalance

This function protects against current unbalances resulting from anomalies in the power system or unbalanced loads.

Circuit Breaker Failure Protection

The CB Failure Protection is based on supervision of phase currents and earth current after tripping events. The test criterion is whether all phase currents have dropped to less than 5% of IN within the set time (tCBFP). If one or more of the phase currents have not dropped to specified current within this time, CB failure is detected and the assigned output relay is activated.

Lockout Relay (86)

Relays programmed with this function will act when the differential unit acts (instantaneous or percentage type) so that they can be used as a locking device for breaker close circuits.

Protection Function Locking

Each protection function can be locked via a digital input as selected and assigned in HMI.

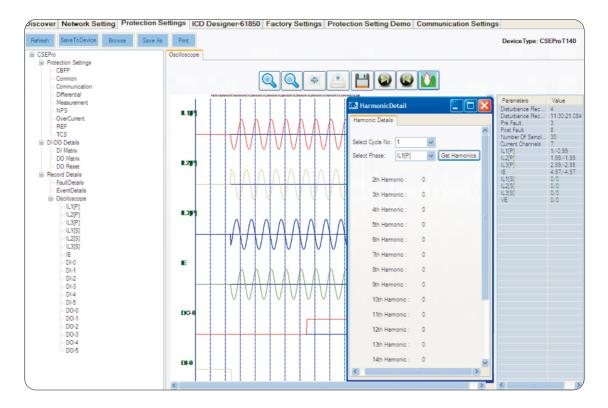
* Note: These are the model dependent and are available in auxiliary models only.

8.0 Monitoring Functions

Trip Circuit Supervision

This feature detects any anomalies in the circuit with the switch open or close. It detects trip circuit supply failure of circuit breaker, tripping mechanism failure like circuit breaker contact degeneration in wires, contacts and coils. Refer Table – 3 for these protection settings.

9.0 Data Acquisition Function


Measurements

- ◆ L1, L2, L3 phase current measurements in HV winding
- ◆ L1, L2, L3 phase current measurements in LV winding
- ◆ L1, L2, L3 differential current measurements
- ◆ Earth current measurement
- Restricted earth current measurement
- Negative phase sequence in HV & LV side
- ◆ Trip counter (Increments whenever any DO trip due to some fault)
- Origin of last fault

Disturbance Record

The CSEPROT relay has an disturbance data recorder with the following characteristics:

- ◆ Disturbance recording can trigger on Pickup or on trip or via DI i.e. change from pre-fault to post-fault stage. It is programmable
- Each record comprises the samples from 7 analog signals and the status of 6 digital inputs and 6 digital outputs. There will be 30 samples per cycle.
- Relay saves maximum 1200 cycles, and the number of cycles per record is programmable (for example: if 40 cycles are selected, then there will be maximum 30 records of 40 cycles each).
- ◆ The pre-fault and post-fault cycles are programmable
- Records are in the non volatile memory.
- ◆ The records are transferred to PC using USB interface. The data is graphically displayed and can be taken on printer
- ♦ Record 1 is always latest record. 2nd record is older than 1st..... and so on.
- Disturbance record in comtrade format as per IEC60255-24.

(Figure-5) Oscilloscope recording on PC software

11.0 Fault Record

CSEPROT records last 10 faults in its non volatile memory with its time stamp. The fault current reading shown by our relay are on the secondary side. Each record has the following information:

Fault Format

IL1[P]	:	00.00A	le	:	00.00A
IL2[P]	:	00.00A	I2[P]	:	00.00A
IL3[P]	:	00.00A	12[S]	:	00.00A
IL1[S]	:	00.00A	L1[2H]	:	00.00A
IL2[S]	:	00.00A	L2[2H]	:	00.00A
IL3[S]	:	00.00A	L3[2H]	:	00.00A
IL1[D]	:	00.00A	L1[5H]	:	00.00A
IL2[D]	:	00.00A	L2[5H]	:	00.00A
IL3[D]	:	00.00A	L3[5H]	:	00.00A
L1[RES]	:	00.00A	HR MIN	:	HH:MIN
L2[RES]	:	00.00A	SEC Ms	:	Sec: mSec
L3[RES]	:	00.00A	DATE	:	DD:MM:YY
Iref	:	00.00A	F-TYPE	:	Type of fault

Where: -

ILx[P] Magnitude of phase currents on primary winding ILx[S] Magnitude of phase currents on secondary winding

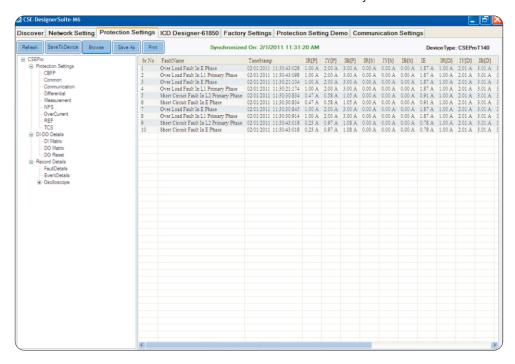
ILx[D] Magnitude of phase differential currents Lx[RES] Magnitude of phase restraining currents

I2[P] Magnitude of Negative phase sequence on primary windingI2[S] Magnitude of Negative phase sequence on secondary winding

Iref Restricted earth fault current

le Earth current

Lx[2H] Magnitude of Second harmonic on differential current (each phase)


Lx[5H] Magnitude of Fifth harmonic on differential current (each phase)

F-Type Origin of fault (I>, I>>, Ie>, Id>, Id>>, Iref>, I2>, ----- etc.)

When the available memory space is exhausted the new fault automatically over writes the oldest fault.

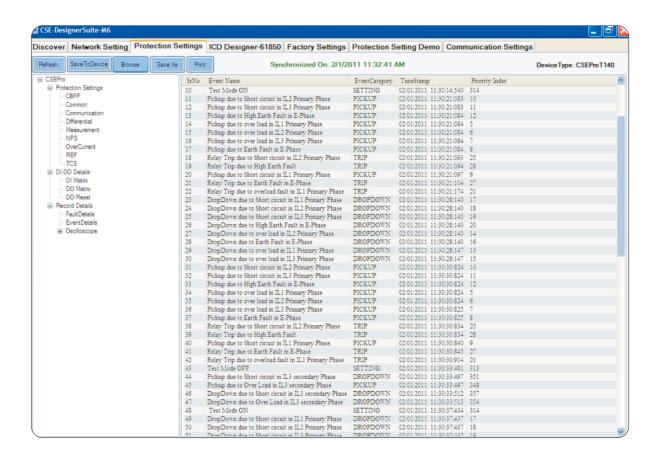
When the relay trips the description of fault in the transformer will appears on the LCD screen automatically and by pressing I key one can easily get all the detailed information of that fault.

The user can view fault records either via the front USB interface software or remotely via the RS-485 communication.

(Figure-6) Fault Data recording on PC software

12.0 Event Record

The unit stores in non volatile memory the last 100 events with its time stamp. When the available memory space is exhausted, the new event automatically overwrites the oldest event, which can be retrieved from a PC, with the following format:


EVENT : EVENT NUMBER

HOUR : HH.MM

SEC:mSEC : SEC:mSEC
DATE : DD/MM/YY

The user can view event records via the front USB interface software

Description of event number available in event list or in front end software.

(Figure-7) Event Data recording on PC Software

Output Contacts

No. of digital outputs : 6 DOs

Type of outputs : Relay

Programmable (DO Assignment) : Yes

Relay reset type : Programmable (Auto/Manual)

Input Contacts

No of digital inputs : 6 DIs

Type of inputs : AC/DC Voltage

Programmable (DI Assignment) : Yes

13.0 Human Machine Interface

CSEPROT offers a variety of front user interfaces, including:

It comprises of alphanumeric display of 16x4 and 8 push buttons for setting and other operations for local access:

- Two push switches for set values of normal tripping characteristics.
- One RESET push switch & One ENTER push switch. One RESET push switch & One ENTER push switch
- One intelligent (i) Key
- One push switch for the tripping of relay assigned to F1 Key
- Two push switches for the tripping of relay assigned to Circuit breaker open & Circuit breaker close
- Eight LEDs for pickup or tripping on faults & events in any phase

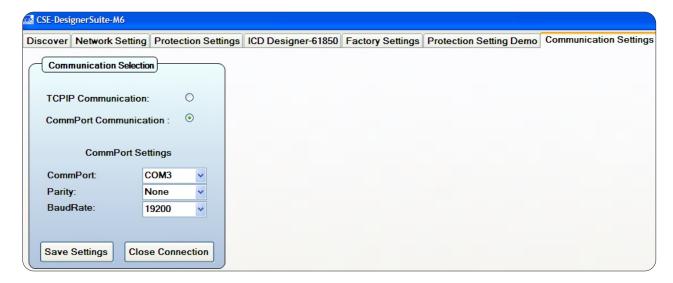
In order to change any setting first press enter $(\stackrel{\longleftarrow}{})$ then only $(\stackrel{\blacktriangleleft}{})$ key will act as increment / decrement else these key will function as scroll in forward / backward direction.

(Figure-8) HMI

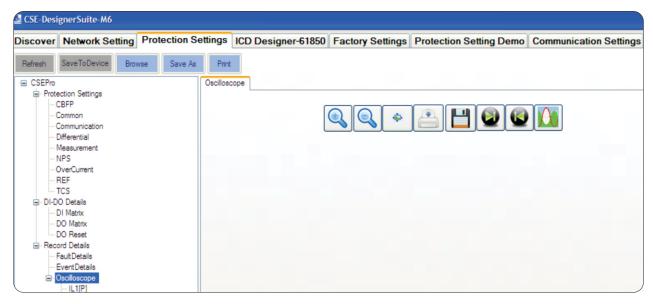
Keys	Manual Key
i	is used as intelligent key to see the details of the last fault.
4	is used as a ENTER key.
R	is used to manual reset (after pressing for 2 sec)
	is used to scroll in upward direction and for decrement of parameters.
•	is used to scroll in downward direction and for increment of parameters.
F1	To perform the assigned task either DO Trip or Relay Reset.
OPEN	To Open the circuit breaker.
CLOSE	To Close the circuit breaker.

14.0 Communication (Local & Remote)

The unit has:


- 1 Front USB port for direct connection to a PC.
- 1 Rear RS-485 communication port.

Rear Communication (RS-485)


The user can choose either MODBUS or IEC60870-5-103 protocol for RS485 communication.

Front Communication (USB)

The entire setting including protection parameter setting for both group, Fault, Event & Disturbance record are available on A type USB (female) interface with CSE LIVELINK with saving & printing option. This unit also has Front-end Live Link simulation support for testing of relay even without any three phase injection source.

(Figure-9) CSE Designer Suite (communication setting for Front end utility)

(Figure-10)

15.0 Setting Ranges

Over-current Protection

Parameters	Display	ay Setting Range		Step Size	Default
		Min	Max		Setting
Over-current pickup setting	>	0.2xlp	4xlp	0.05	Disable
Phase characteristics	CURVE			DEFT,EINV,VINV, LINV,	DEFT
				NINV1.3, NINV3.0 (1)	
Over-current inverse timing	ti	0.01	1.5	0.005	0.010
Over-current definite timing	t	0.1 Sec	150 Sec	0.01	0.10 Sec
Short circuit pickup setting	>>	0.5xlp	40xIp	0.5	Disable
Short circuit definite timing	t	0.02 Sec	20 Sec	0.01	0.02 Sec

(Table-1)

Earth Protection

Parameters	Display	Setting Min	Range Min	Step Size	Default Setting
Earth pickup setting	le>	0.05xln	2.5xln	0.05	Disable
Earth characteristics	CURVE			DEFT,EINV,VINV,LINV	
				NINV1.3, NINV3.0(1)	DEFT
Earth inverse timing	ti	0.01	1.5	0.005	0.010
Earth definite timing	t	0.03 Sec	150 Sec	0.01	0.03 Sec
Earth hi-set pickup setting	le>>	0.5xIn	8xIn	0.05	Disable
Earth hi-set definite timing	t	0.02 Sec	20 Sec	0.01	0.02 Sec

(Table-2)

(1) Refer following formula for EINV, VINV, LINV, NINV1.3, NINV3.0 characteristics:

Very Inverse
$$t = \frac{13.5}{(I/Is)-1}$$
 ti [s]

Extremely Inverse
$$t = \frac{80}{(I/Is)^2 - 1}$$
 ti [s]

Long time Inverse
$$t = \frac{120}{(I/Is)-1}$$
 ti [s]

Normal Inverse 3.0/1.3
$$t = \frac{0.14/0.061}{(I/Is)^{0.02} - 1} ti [s]$$

Where t=Tripping time ti=Time multiplier

Trip Circuit Supervision Protection

Parameters	Display	Setting Range		Step	Default
		Min	Max	Size	Setting
Trip Circuit Supervision	td	0.03 Sec	2 Sec	0.01	Disable

(Table-3)

Circuit Breaker Failure Protection

Parameters	Display	Setting Range		Step	Default
		Min	Max	Size	Setting
Circuit breaker failure protection	tCBFP	0.03 Sec	2 Sec	0.01	Disable

(Table-4)

Negative Phase Sequence Setting

Parameters	Display	Setting	Range	Step	Default
		Min	Max	Size	Setting
NPS pickup current	lb	0.50xlp	2.5xlp	0.1xlp	Disable
NPS characteristic	CHAR	DEFT	NPS-INV(2)		DEFT
Time multiple	K1	5 Sec	60 Sec	0.1 Sec	5.0 Sec
Time constant	K2	0.02	0.4	0.01	0.02
Definite time	td	0.02 Sec	0.4 Sec	0.01 Sec	0.02 Sec

(Table-5)

(2) Refer following formula for INV characteristics:

Negative Phase Sequence Equation

$$t = \frac{K_1}{(I_2/I_b)^2 - (K_2)^2}$$

Differential Protection Setting

Parameters	Display	Setting Range		Step	Default
		Min	Max	Size	Setting
Percentage Differential Protection					
Enable Differential Protection	DIFFR	Disable	Enable		Disable
Min. Pickup Current	m0 (3)	0.04	1.00	0.01	0.12
1st Slope	m1 (3)	10%	100%	1%	20%
2nd Slope	m2 (3)	10%	100%	1%	20%
Start point of 1st slope	K1 (3)	0.04	2.00	0.01	0.24
Start point of 2nd slope	K2 (3)	1	10	0.02	1.30
Vector Group	Vect Grp			Yd1/Yd3/Yd5/	
				Yd7/Yd9/Yd11/	
				Dy1/Dy3/Dy5/	
				Dy7/Dy9/Dy11/	YY0
				YY0/DD0/YY2/	
				DD2/YY4/DD4/	
				YY6/DD6/YY8	
				DD8/YY10/DD10	
Primary CT correction factor					
(PriCTcorr)	PriCTcor	0.2	4.0	0.01	1.00
Secondary CT correction factor					
(SecCTcorr)	SecCTcor	0.2	4.0	0.01	1.00
Added delay (Lo-set)	td>	0 Sec	60 Sec	0.01 Sec	0.00 Sec
Hi-set setting (Hi-Set)	HiSet	5xlp	20xlp	1xlp	Disable
Hi-set delay	td>>	0.02 Sec	60 Sec	0.01 Sec	0.02 Sec

(Table-6)

Note: (3) (Always ensure that m0 < k1 and k1 < k2).

Harmonic Restrain

Parameters Display		Setting Range		Step Size	Default
		Min	Max	·	Setting
2nd harmonic blocking limit	2nd H	20% If	50% If	5% If	Disable
5th harmonic blocking limit	5th H	20% If	50% If	5% If	Disable
3rd harmonic blocking limit	3rd H	20% If	50% If	5% If	Disable
Protection blocked,					
if harmonic in all 3 Ph/1Ph	Phase	1 Phase	3 Phase	-	1 Phase
Differential protection					
blocking on harmonic	DIFF BLK	Disable	Enable	-	Enable
Over-current protection					
blocking on harmonic	OC_BLK	Disable	Enable	-	Disable
Short circuit protection					
on harmonic	SC-BLK	Disable	Enable	-	Disable
Negative phase					
sequence on harmonic	NPS_BLK	Disable	Enable	-	Disable
Earth Low on harmonic	EL BLK	Disable	Enable	-	Disable
Earth High on harmonic	EH BLK	Disable	Enable	-	Disable
Restricted earth protection					
on harmonic	REF BLK	Disable	Enable	-	Disable

(Table-7)

Restricted Earth Protection

Parameters	Display	Setting Range		Step Size	Default
		Min	Max		Setting
Restricted Earth Fault Protection	(Only star side w	vill be protected)			
Enable REF protection	REF	Disable	Enable	-	Disable
Min. REF pickup	m0_REF(4)	0.04	1	0.02	0.14
REF first slope	m1REF(4)	10%	100%	1%	20%
Start point of slope	k1_REF(4)	0.04	3	0.02	0.34
Added delay	td	0 Sec	60 Sec	0.01 Sec	0.00 Sec
Earth CT correction factor	ECTcorr	0.1	4	0.01	1.00
Protection on Pri or Sec winding	Winding	Primary	Secondary	-	Primary

(Table-8)

Note: (4) (4) Refer Figure-4 for settable parameters of restricted earth fault (REF) trip characteristic Always ensure that m1REF<k1_REF

DI Assignment

Parameters	Display	Default Setting
Circuit breaker close	CB_CLOSE	
Circuit breaker open	CB_OPEN	
Remote trip-1	RmtTrp1	
Remote trip-2	RmtTrp2	
Remote trip-3	RmtTrp3	
Remote trip-4	RmtTrp4	
Remote trip-5	RmtTrp5	
Remote trip-6	RmtTrp6	
Group toggling	GRP TOGG	
Remote reset	RMT RSET	
Oscilloscope record triggering	OSC TRIG	
Over-current blocking	OC BLK	
Short circuit blocking	SC BLK	
Earth timed blocking	EL BLK	
Earth instant blocking	EH BLK	
Differential blocking	DIFL BLK	
Differential hi-set blocking	DIFH BLK	
REF blocking	REF BLK	
NPS blocking	NPS BLK	

(Table-9)

DO Assignment

Parameters	Display	Default Setting
Over-current protection	>	
Short circuit protection	>>	
Earth timed protection	le>	
Earth instant protection	le>>	
Percentage differential protection	ld>	
Differential hi-set protection	ld>>	
Restricted earth fault protection	Iref>	
Negative phase sequence protection	12>	
Trip circuit supervision	74TC	
Circuit breaker failure protection	CBFP	
Circuit breaker open	CB OPEN	
Circuit breaker close	CB CLOSE	
Remote trip-1	RmtTrp1	
Remote trip-2	RmtTrp2	
Remote trip-3	RmtTrp3	
Remote trip-4	RmtTrp4	
Remote trip-5	RmtTrp5	
Remote trip-6	RmtTrp6	
Self supervision	SLF SPVSN	

(Table-10)

DO RESET Mode

Parameters	Display	Setting Range		Default Setting	
		Min	Max		
Relay 1	DO1	Auto	Manual	Auto	
Relay 2	DO2	Auto	Manual	Auto	
Relay 3	DO3	Auto	Manual	Auto	
Relay 4	DO4	Auto	Manual	Auto	
Relay 5	DO5	Auto	Manual	Auto	
Relay 6	DO6	Auto	Manual	Auto	

(Table-11)

Key Assignment

Relay is having one function key (F1). It can be assign to trip any of 6 DO or to reset the CSEPROT relay.

Parameters	Display	Setting Range	Default Setting
Function key	F1	DO1/DO2/DO3/DO4/DO5/DO6/DO RESET	DO0

(Table-12)

General Setting

Parameters	Display Setting Range		Step Size	Default	
		Min	Max	•	Setting
Common setting					
Rated phase current for HV side	lp [P]	1.00 Amp	5.00 Amp		1.0 Amp
Rated phase current for LV side	lp [S]	1.00 Amp	5.00 Amp		1.0 Amp
Rated earth current	In	1.00 Amp	5.00 Amp		1.0 Amp
Primary CT ratio	PriCTRatio	1	10000	1	1
Secondary CT ratio	SecCTRatio	1	10000	1	1
Earth CT ratio	E CT Ratio	1	10000	1	1
Nominal frequency	Nom.FREQ	50 Hz	60 Hz		50 Hz

(Table-13)

Disturbance Record Setting

Parameters	Display	Setting Range		Step Size	Default
		Min	Max	-	Setting
Disturbance recording selection	RECORD	NO	YES		NO
Pre-fault cycle	PRE CYCLE	2	298	1	2 Cycle
Post-fault cycle	POST CYCLE	2	298	1	2 Cycle
Triggering mode	TRIG. MODE	PK-UP	PK-UP/TRIP/ DI/ anyone		PK-UP

(Table-14)

Rear (RS-485) Communication

Description		Default Setting
Protocol	MODBUS RTU / IEC-103	MODBUS
Baud rate selection (programmable)	4800 / 9600 / 19200 / 38400 / 57600 bps	19200 bps
Parity selection (programmable)	Even / Odd / None	None
Stop bit	1 Bit	1 Bit
Data bit	8 Bit data	8 Bit data
Remote address (programmable)	(1 to 32)	1
Cable required for interface	Two wire twisted shielded cable	

(Table-15)

Front (USB) Communication

Protocol	CSE Proprietary Protocol: available with front software
Baud rate	19200 bps
Cable required for Interface	USB cable type (A to A)

(Table-16)

16.0 Technical Data

Measuring Input

Rated Data	Rated current lp :1A & 5A Rated frequency Fn : 50Hz/60Hz
Thermal withstand capability in current circuit	At Ip = 1A Continuous = 5 x Ip for 10 Sec = 30 x Ip for 1 Sec = 100 x Ip
	At Ip = 5A Continuous = 3 x Ip for 10 Sec = 10 x Ip for 1 Sec = 20 x Ip
Nominal burden	For phase = <0.2VA For earth = <0.2VA

(Table-17)

Measurement Accuracy

Parameters	Range	Frequency Range	Accuracy
Current in Ampere	1.0 - 40xIn	50-60Hz	Less than <u>+</u> 2%

(Table-18)

Trip Time Accuracy

Parameters	Accuracy		
Trip time accuracy for differential Hi-set	+10mSec OR +5% (whichever is higher)		
AND			
Trip time accuracy for all other protections	+30mSec OR +5% (whichever is higher)		

(Table-19)

Relay Contact Rating

Contact rating	
Contact relay	Dry contact Ag Ni
Make current	Max. 30A & carry for 3S
Carry capacity	8A continuous
Rated voltage	250V AC
Breaking characteristics	
Breaking capacity AC	1500VA resistive
	1500VA inductive (PF=0.5)
	220V AC, 5A (cos phi=0.6)
Breaking capacity DC	135V DC, 0.3A (L/R=30ms)
	250V DC, 50W resistive or
	25W inductive (L/R=40ms)
Operation time	<7ms
Durability	
Loaded contact	10000 operation minimum

Over-voltage category : II, Insulation voltage : 300V, Pollution Degree : 2, IP54 from Front

(Table-20)

Auxiliary Supply

Rated auxiliary voltage UH	For L Model	18V-60V DC
	For W1 Model	18V-150V DC
	For H Model	85V-280V AC / 110V-300V DC
Rated supply for digital input	Normal Voltage UN	80V-260V AC (Active)
	For H Model	48V-300V DC (Active)
		<30V DC (Inactive)
		<50V AC (Inactive)
	Normal Voltage UN	24V - 60V DC (Active)
	For L Model	<18V DC (Inactive)
Power consumption	Quiescent approx. 3W	Operating approx. <7W

(Table-21)

Common Data

Dropout ratio	> 96%
Relay Reset time	30 ms
Minimum operating time	30 ms
Transient overreach at instantaneous operation	<u><</u> 5 %

(Table-22)

17.0 Standards

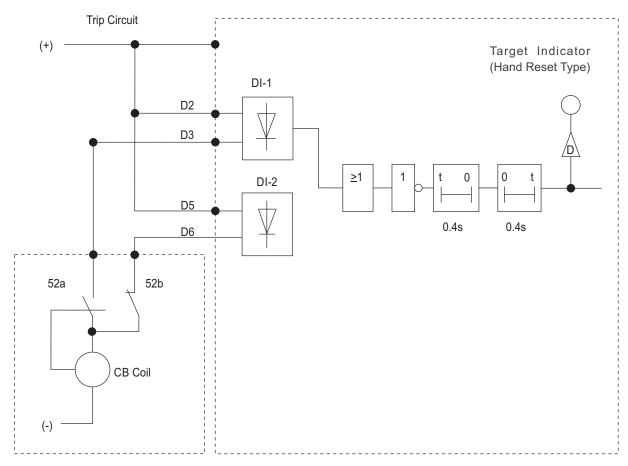
Type Test			
F1	Functional Tests	Internal Design	Performance in line with Specification & Standards
			Pickup/Drop down/Power consumption in
		Specifications &	Current/Voltage/Aux Supply/Trip timing accuracy: OC/
		IEC60255-6	Directional/NPS/Thermal/OV/Zero Seq/Over Power/
		IEC60255-3	freq/Rate of change of Freq

Climatic Test				
C1	Temperature Dry Cold	IEC 60068-2-1	-20 deg C, 96 hours	
	(Relay operational)			
C2	Temperature Dry Cold	IEC 60068-2-1	-25 deg C, 96 hours	
	Transportation & Storage			
C3	Temperature Dry Heat	IEC 60068-2-2	55 deg C, 96 hours	
	(Relay operational)			
C4	Temperature Dry Heat	IEC 60068-2-2	70 deg C, 96 hours	
	Transportation & Storage			
C5	Damp Heat Test	IEC 60068-2-18	95% @ +55 / +25 deg C, 6 cycle (12hr + 12hr each)	
	(Relay operational)			

Encl	osure		
C6	Enclosure	IEC 60529	Front IP54 (Dust 5x + Water x4)

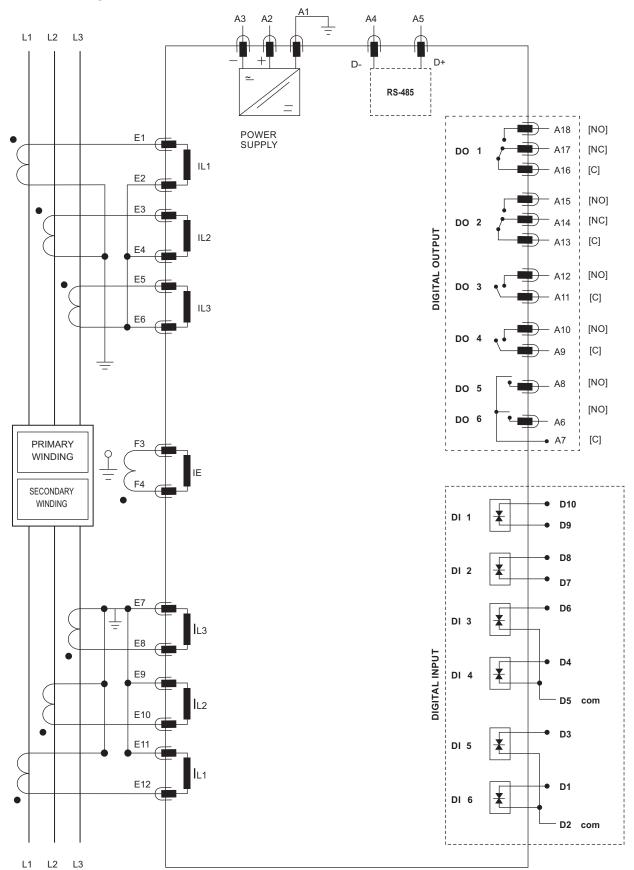
Mechanical Test

Relay Operational				
M1	Vibration response / Endurance test	IEC 60068-2-6	Class I Vibration response (Relay operational) 10Hz~150 Hz - peak displacement 0.035 mm below 58/60 Hz, 0.5 g above, 1 sweep cycle in each axis Vibration endurance (Relay de-energised)	
M2	Shock Response / Withstand Test	IEC 60255-21-1	10 Hz~150 Hz 1g, 20 sweep cycles in each axis Class I Shock response (Relay operational) 5g 11mS 3 pulse in each axis Shock withstand (Relay de-energised) 15g 11mS 3 pulses in each axis	
M3	Bump	IEC 60255-21-1	Bump (Relay de-energised) 10g 16mS 1000 pulses in each axis	
M4	Seismic	IEC 60255-21-3	Class I Method A single axis sine sweep 1 Hz~35 Hz–below 8/9 Hz 3.5 mm peak displacement horizontal axis, 1.5 mm vertical axis above 8/9 Hz 1g horizontal, 0.5 g vertical 1 sweep cycle in each axis	


Electrical Test				
E1	Insulation Resistance >100MΩ	IEC 60255-5	500V DC, 5 sec between all terminals & case earth, between terminals of independent circuits including contact circuits and across open contacts	
E2	DC & AC Supply Voltage (Relay operational)		IEC 60255-6 Voltage range, upper & lower limit continuous withstand, ramp up & down over 1 minute	
E3	Voltage Dips, Short Interruptions & Voltage variations immunity (Relay operational)	IEC 1000-4-11	IEC 60255-113 Dips & 3 Interruptions at 10 sec intervals of duration between 10mS and 500mS at zero crossings & at other points on wave Variation: 100% to 40% over 2s, hold for 1s, return to 100% over 2s	
E4	Ripple in DC supply (Relay operational)	IEC 60255-11	12% AC ripple	
E5	Dielectric Test (Relay de-energised) No breakdown or flash over Test voltage 45~65 Hz sinusoidal or with DC voltage at 1.4x the stated AC values	IEC 60255-5	2.0 KV @ 1min All circuit to Earth / Between IP & OP	
E6	High Voltage Impulse (Relay de-energised)	IEC 60255-5	5 kV peak 1.2/50uS, 0.5 J-3 positive, 3 negative between all terminals to case earth between independent circuits	
E7	VT Input Thermal Withstand		1.5xVn, continuous	
E8	CT Input Thermal Withstand		250xln half wave 100xln for 1 second 30xln for 10 second 4xln continuously	
E9	Contact performance & endurance tests	IEC 60255-14,15 IEC 60255-1		

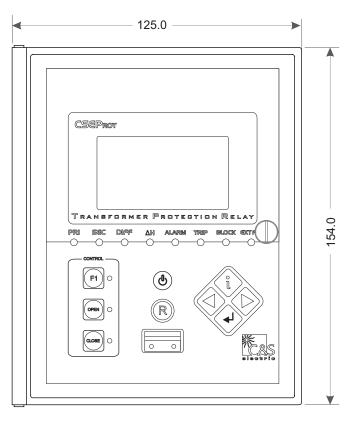
Elec	Electro-magnetic Compatibility					
R1	Electrical fast Transient/Burst (Relay operational)	IEC 60255-22-4 IEC 61000-4-4	Class IV- ±4.0 kV All Circuits. Pulse 5/50nsec/Duration 15msec/ Period: 300msec/Pulse Freq: 5KHz / 2KV at I/O			
R2	HF Disturbance Test (Oscillatory Waves) 1 MHZ Burst (Relay operational)	IEC 60255-22-1	Class III Longitudinal 2.5 kV peak, 2sec between independent circuits & case earth			
R3	Electrostatic Discharge (Relay operational)	IEC 60255-22-2 IEC 61000-4-2	Class III 8kV air discharge, 6KV contact No of Discharge : 10 both polarities at 1 sec intervals			
R4	Conducted Disturbance RF fields (Relay operational)	IEC 61000-4-6 IEC 60255-22-6	0.15 to 80 MHz (Level-3) Severity Level 10V RMS + sweeps 0.05-0.15 MHz & 80-100 MHz			
R5	Radiated RF E-M field immunity test (Relay operational)	IEC 60255-22-3 IEC 61000-4-3	Class III Test method A + sweep 80-1000 MHZ or IEC 1000-4-3 80-1000 MHZ severity 10 V/m 80% modulated 1 kHz			
R6	Surge Immunity capacitively coupled (Relay operational)	IEC 61000-4-5 Class 5 Test level 4 IEC 60255-22-5: 2008 Latest: IEC 60255-26:2013	Short circuit combination wave generator 1.2 uS/50 uS open circuit repetition rate 1 per minute Power supply, CT & VT circuits – 4kV common mode 2 Ohm source 2kV differential mode 12 Ohm source			
R7	Power Frequency Magnetic Field (Relay operational)	IEC 61000-4-8	100 A/m for 1 minute in each of 3 axes			
R8	Conducted & Radiated RF Interference Emission (Relay operational)	EN55011 IEC 60255-25	CISPR11/ Class A			
R9	Power Frequency, conducted common mode	IEC 1000-4-16 IEC 60255-22-7	D.C. to 150 kHz Test Level 4 300V at 16 2/3 Hz and 50 Hz			

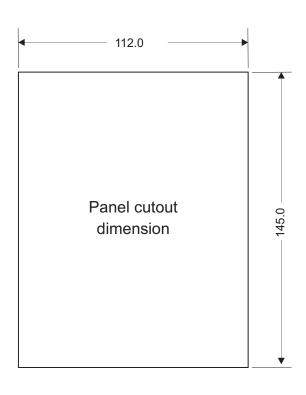
18.0 Trip Circuit Supervision Diagram


(Figure 11) (Trip Circuit Supervision Function)

Back view of the Relay

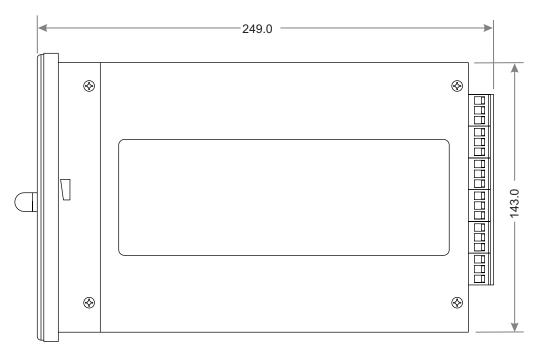
19.0 Connection Diagram


(Figure-13)



20.0 Dimension Details

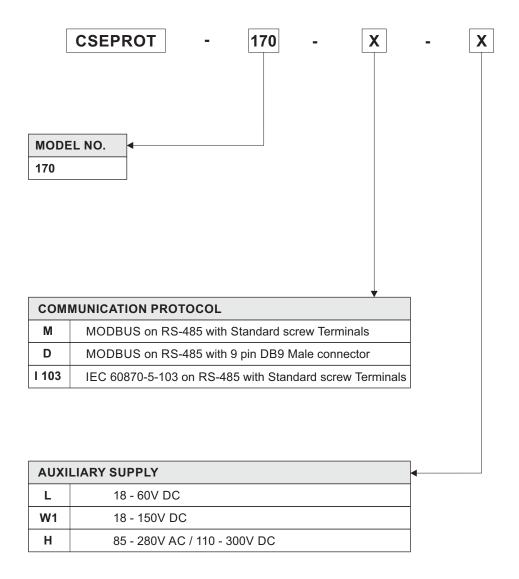
(All the dim. are in mm, Gen. Tol.: + 1.0mm)


Front View

(Figure-15) (Figure-16)

Side View

(Figure-17)


21.0 Model Selection Table

Description	ANSI	CSEPRO-T 170	
CT Inputs		7	
Digital Inputs		6	
Digital Output		6	
Function Keys / Hotkeys		•	
Protection / Supervision Function			
Transformer Differential	87P	•	
Windings		2	
Restricted Earth Fault	64/87G	•	
Harmonic Blocking	50H	•	
Phase Over-current	50/51P	•	
Ground Fault	50/51N	•	
Negative Sequence Over-current	46	•	
Circuit Breaker Failure	50BF	•	
Trip Circuit Supervision	74TC	•	
Communication			
Front (USB)		•	
MODBUS on RS-485 with Standard screw Terminals		•	
MODBUS on RS-485 with 9 pin DB9 Male connector		•	
IEC 60870-5-103 on RS-485 with Standard screw Terminals		•	

(Table-22)

22.0 Ordering Information

Example: CSEPROT-170-M-L

26

Issue Date: 05.08.11, Rev. No: 15, Rev. Date: 06.06.24

CSEPRO-T 170

Revision History

S.No.	Rev.No.	Details	Date
01	11	Inclusion of TCS Diagram	05.08.14
02	12	Addition of W1 Model in Aux Supply (Table-21) and in Ordering information	03.06.15
03	13	Removing Details of 140 & 200 model from the catalog	31.08.22
04	14	Change in communication option of ordering information on page 26	20.11.23
05	15	RJ-45 & IEC 61850 details removed from the catalog	06.06.24
		NOTE:	<u> </u>

NOTE

The content in this document are not binding and is for general information.

C&S reserves the right to change the design, content or specification contained in this document without prior notice.

For further information, please contact:

C&S Electric Ltd. (Protection & Measurement Devices)

C-60, Wing-A, Phase-II, Noida-201 305, Dist: Gautam Budh Nagar (U.P) INDIA Phone: +91-120-38748 00 / 01

Branch Address

Branch	Phone	Fax	E-mail
Ahmedabad	+91-79-615651 22/23/24	+91-79-61565130	cspc.ahemdabad@cselectric.co.in
Bangalore	+91-80-305703 72/73, 30570347	+91-2558-4839	bangalore@cselectric.co.in
Bhubaneswar	+91-674-2507265	+91-674 2507265	bhubaneswar@cselectric.co.in
Chennai	+91-44-33534501,33534521-23		chennaiteam@cselectric.co.in
Cochin	+91-484-3071717	+91-484-3071716	
Delhi	+91-11-338490 00/10/11	+91-11-30838826	sales.pmd@cselectric.co.in
Hyderabad	+91-40-485340 80/82		hyderabad@cselectric.co.in
Kolkata	+91-33-392121 19-21		
Mumbai	+91-22-241147 27/28		mumbaiteam@cselectric.co.in
Pune:	+91-20-242505 18/19	+91-20-30283244	pune@cselectric.co.in